Solve for S (complex solution)
\left\{\begin{matrix}S=\frac{40x_{1}\left(21x_{1}+y+245\right)}{d_{1}}\text{, }&d_{1}\neq 0\\S\in \mathrm{C}\text{, }&\left(x_{1}=0\text{ or }x_{1}=-\frac{y}{21}-\frac{35}{3}\right)\text{ and }d_{1}=0\end{matrix}\right.
Solve for d_1 (complex solution)
\left\{\begin{matrix}d_{1}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{S}\text{, }&S\neq 0\\d_{1}\in \mathrm{C}\text{, }&\left(x_{1}=0\text{ or }x_{1}=-\frac{y}{21}-\frac{35}{3}\right)\text{ and }S=0\end{matrix}\right.
Solve for S
\left\{\begin{matrix}S=\frac{40x_{1}\left(21x_{1}+y+245\right)}{d_{1}}\text{, }&d_{1}\neq 0\\S\in \mathrm{R}\text{, }&\left(x_{1}=0\text{ or }x_{1}=-\frac{y}{21}-\frac{35}{3}\right)\text{ and }d_{1}=0\end{matrix}\right.
Solve for d_1
\left\{\begin{matrix}d_{1}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{S}\text{, }&S\neq 0\\d_{1}\in \mathrm{R}\text{, }&\left(x_{1}=0\text{ or }x_{1}=-\frac{y}{21}-\frac{35}{3}\right)\text{ and }S=0\end{matrix}\right.
Graph
Share
Copied to clipboard
Sd_{1}=40x_{1}y+40x_{1}\times 5+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Multiply x_{1} and x_{1} to get x_{1}^{2}.
Sd_{1}=40x_{1}y+200x_{1}+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Multiply 40 and 5 to get 200.
Sd_{1}=40x_{1}y+200x_{1}+140x_{1}^{2}\times 6+50x_{1}\times 2\times 96
Multiply 35 and 4 to get 140.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+50x_{1}\times 2\times 96
Multiply 140 and 6 to get 840.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+100x_{1}\times 96
Multiply 50 and 2 to get 100.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+9600x_{1}
Multiply 100 and 96 to get 9600.
Sd_{1}=40x_{1}y+9800x_{1}+840x_{1}^{2}
Combine 200x_{1} and 9600x_{1} to get 9800x_{1}.
d_{1}S=840x_{1}^{2}+40x_{1}y+9800x_{1}
The equation is in standard form.
\frac{d_{1}S}{d_{1}}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{d_{1}}
Divide both sides by d_{1}.
S=\frac{40x_{1}\left(21x_{1}+y+245\right)}{d_{1}}
Dividing by d_{1} undoes the multiplication by d_{1}.
Sd_{1}=40x_{1}y+40x_{1}\times 5+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Multiply x_{1} and x_{1} to get x_{1}^{2}.
Sd_{1}=40x_{1}y+200x_{1}+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Multiply 40 and 5 to get 200.
Sd_{1}=40x_{1}y+200x_{1}+140x_{1}^{2}\times 6+50x_{1}\times 2\times 96
Multiply 35 and 4 to get 140.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+50x_{1}\times 2\times 96
Multiply 140 and 6 to get 840.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+100x_{1}\times 96
Multiply 50 and 2 to get 100.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+9600x_{1}
Multiply 100 and 96 to get 9600.
Sd_{1}=40x_{1}y+9800x_{1}+840x_{1}^{2}
Combine 200x_{1} and 9600x_{1} to get 9800x_{1}.
Sd_{1}=840x_{1}^{2}+40x_{1}y+9800x_{1}
The equation is in standard form.
\frac{Sd_{1}}{S}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{S}
Divide both sides by S.
d_{1}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{S}
Dividing by S undoes the multiplication by S.
Sd_{1}=40x_{1}y+40x_{1}\times 5+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Multiply x_{1} and x_{1} to get x_{1}^{2}.
Sd_{1}=40x_{1}y+200x_{1}+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Multiply 40 and 5 to get 200.
Sd_{1}=40x_{1}y+200x_{1}+140x_{1}^{2}\times 6+50x_{1}\times 2\times 96
Multiply 35 and 4 to get 140.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+50x_{1}\times 2\times 96
Multiply 140 and 6 to get 840.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+100x_{1}\times 96
Multiply 50 and 2 to get 100.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+9600x_{1}
Multiply 100 and 96 to get 9600.
Sd_{1}=40x_{1}y+9800x_{1}+840x_{1}^{2}
Combine 200x_{1} and 9600x_{1} to get 9800x_{1}.
d_{1}S=840x_{1}^{2}+40x_{1}y+9800x_{1}
The equation is in standard form.
\frac{d_{1}S}{d_{1}}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{d_{1}}
Divide both sides by d_{1}.
S=\frac{40x_{1}\left(21x_{1}+y+245\right)}{d_{1}}
Dividing by d_{1} undoes the multiplication by d_{1}.
Sd_{1}=40x_{1}y+40x_{1}\times 5+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Multiply x_{1} and x_{1} to get x_{1}^{2}.
Sd_{1}=40x_{1}y+200x_{1}+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Multiply 40 and 5 to get 200.
Sd_{1}=40x_{1}y+200x_{1}+140x_{1}^{2}\times 6+50x_{1}\times 2\times 96
Multiply 35 and 4 to get 140.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+50x_{1}\times 2\times 96
Multiply 140 and 6 to get 840.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+100x_{1}\times 96
Multiply 50 and 2 to get 100.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+9600x_{1}
Multiply 100 and 96 to get 9600.
Sd_{1}=40x_{1}y+9800x_{1}+840x_{1}^{2}
Combine 200x_{1} and 9600x_{1} to get 9800x_{1}.
Sd_{1}=840x_{1}^{2}+40x_{1}y+9800x_{1}
The equation is in standard form.
\frac{Sd_{1}}{S}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{S}
Divide both sides by S.
d_{1}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{S}
Dividing by S undoes the multiplication by S.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}