S _ { n } = 4000 \cdot \frac { ( 1 + 0,11 ) ^ { 12 } - 1 } { 0,11 }
Solve for S_n
S_{n}=90852,7489794776069007244
Assign S_n
S_{n}≔90852,7489794776069007244
Share
Copied to clipboard
S_{n}=4000\times \frac{1,11^{12}-1}{0,11}
Add 1 and 0,11 to get 1,11.
S_{n}=4000\times \frac{3,498450596935634189769921-1}{0,11}
Calculate 1,11 to the power of 12 and get 3,498450596935634189769921.
S_{n}=4000\times \frac{2,498450596935634189769921}{0,11}
Subtract 1 from 3,498450596935634189769921 to get 2,498450596935634189769921.
S_{n}=4000\times \frac{2498450596935634189769921}{110000000000000000000000}
Expand \frac{2,498450596935634189769921}{0,11} by multiplying both numerator and the denominator by 1000000000000000000000000.
S_{n}=4000\times \frac{227131872448694017251811}{10000000000000000000000}
Reduce the fraction \frac{2498450596935634189769921}{110000000000000000000000} to lowest terms by extracting and canceling out 11.
S_{n}=\frac{227131872448694017251811}{2500000000000000000}
Multiply 4000 and \frac{227131872448694017251811}{10000000000000000000000} to get \frac{227131872448694017251811}{2500000000000000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}