Solve for S_n
S_{n}=139078.111967421651511795211491476272426793473739574474761781970853313705359137495484022832653475858174646481483487026511080658332943308895917808714052491564811003161493027658420934580646223356391210426067796272605776693856915955456035134750251166614749848551988543951056045950758075102594432861315111023956179281715027177021232998514688
Assign S_n
S_{n}≔139078.111967421651511795211491476272426793473739574474761781970853313705359137495484022832653475858174646481483487026511080658332943308895917808714052491564811003161493027658420934580646223356391210426067796272605776693856915955456035134750251166614749848551988543951056045950758075102594432861315111023956179281715027177021232998514688
Share
Copied to clipboard
S_{n}=1200\times \frac{1.0074^{84}-1}{0.0074}
Add 1 and 0.0074 to get 1.0074.
S_{n}=1200\times \frac{1.857648357132433517656070470864103679965226421394042594364322153595434516381347888818140801363101125410319969148169996818330726386483738191493153736657031316334519495873670560262429913985044031079130960751410347735622945450981725312216664293215527457624066070596021031512283363008129799332335978109851314396438903909334258297603490840576-1}{0.0074}
Calculate 1.0074 to the power of 84 and get 1.857648357132433517656070470864103679965226421394042594364322153595434516381347888818140801363101125410319969148169996818330726386483738191493153736657031316334519495873670560262429913985044031079130960751410347735622945450981725312216664293215527457624066070596021031512283363008129799332335978109851314396438903909334258297603490840576.
S_{n}=1200\times \frac{0.857648357132433517656070470864103679965226421394042594364322153595434516381347888818140801363101125410319969148169996818330726386483738191493153736657031316334519495873670560262429913985044031079130960751410347735622945450981725312216664293215527457624066070596021031512283363008129799332335978109851314396438903909334258297603490840576}{0.0074}
Subtract 1 from 1.857648357132433517656070470864103679965226421394042594364322153595434516381347888818140801363101125410319969148169996818330726386483738191493153736657031316334519495873670560262429913985044031079130960751410347735622945450981725312216664293215527457624066070596021031512283363008129799332335978109851314396438903909334258297603490840576 to get 0.857648357132433517656070470864103679965226421394042594364322153595434516381347888818140801363101125410319969148169996818330726386483738191493153736657031316334519495873670560262429913985044031079130960751410347735622945450981725312216664293215527457624066070596021031512283363008129799332335978109851314396438903909334258297603490840576.
S_{n}=1200\times \frac{857648357132433517656070470864103679965226421394042594364322153595434516381347888818140801363101125410319969148169996818330726386483738191493153736657031316334519495873670560262429913985044031079130960751410347735622945450981725312216664293215527457624066070596021031512283363008129799332335978109851314396438903909334258297603490840576}{7400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}
Expand \frac{0.857648357132433517656070470864103679965226421394042594364322153595434516381347888818140801363101125410319969148169996818330726386483738191493153736657031316334519495873670560262429913985044031079130960751410347735622945450981725312216664293215527457624066070596021031512283363008129799332335978109851314396438903909334258297603490840576}{0.0074} by multiplying both numerator and the denominator by 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.
S_{n}=1200\times \frac{1198361644270108444233605454355064736698985148913233019373495227531416594121072567260211775956062672588244509657789168726278473178191512279383628326833785972545613989645765901062461077781000506656731981978176291144891289963165115886218465980164629907129995807214693212364270470424494792822789328727714928472253}{10339757656912845935892608650874535669572651386260986328125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}
Reduce the fraction \frac{857648357132433517656070470864103679965226421394042594364322153595434516381347888818140801363101125410319969148169996818330726386483738191493153736657031316334519495873670560262429913985044031079130960751410347735622945450981725312216664293215527457624066070596021031512283363008129799332335978109851314396438903909334258297603490840576}{7400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000} to lowest terms by extracting and canceling out 715684085211860471426056192.
S_{n}=\frac{3595084932810325332700816363065194210096955446739699058120485682594249782363217701780635327868188017764733528973367506178835419534574536838150884980501357917636841968937297703187383233343001519970195945934528873434673869889495347658655397940493889721389987421644079637092811411273484378468367986183144785416759}{25849394142282114839731521627186339173931628465652465820312500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}
Multiply 1200 and \frac{1198361644270108444233605454355064736698985148913233019373495227531416594121072567260211775956062672588244509657789168726278473178191512279383628326833785972545613989645765901062461077781000506656731981978176291144891289963165115886218465980164629907129995807214693212364270470424494792822789328727714928472253}{10339757656912845935892608650874535669572651386260986328125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000} to get \frac{3595084932810325332700816363065194210096955446739699058120485682594249782363217701780635327868188017764733528973367506178835419534574536838150884980501357917636841968937297703187383233343001519970195945934528873434673869889495347658655397940493889721389987421644079637092811411273484378468367986183144785416759}{25849394142282114839731521627186339173931628465652465820312500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}