Solve for n
n=-\frac{S_{n}}{S_{n}-1}
S_{n}\neq 1
Solve for S_n
S_{n}=\frac{n}{n+1}
n\neq -1
Share
Copied to clipboard
S_{n}\left(n+1\right)=n
Variable n cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by n+1.
S_{n}n+S_{n}=n
Use the distributive property to multiply S_{n} by n+1.
S_{n}n+S_{n}-n=0
Subtract n from both sides.
S_{n}n-n=-S_{n}
Subtract S_{n} from both sides. Anything subtracted from zero gives its negation.
\left(S_{n}-1\right)n=-S_{n}
Combine all terms containing n.
\frac{\left(S_{n}-1\right)n}{S_{n}-1}=-\frac{S_{n}}{S_{n}-1}
Divide both sides by S_{n}-1.
n=-\frac{S_{n}}{S_{n}-1}
Dividing by S_{n}-1 undoes the multiplication by S_{n}-1.
n=-\frac{S_{n}}{S_{n}-1}\text{, }n\neq -1
Variable n cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}