Solve for S_n
S_{n}=14\left(\delta _{0}+46\right)
Solve for δ_0
\delta _{0}=\frac{S_{n}-644}{14}
Share
Copied to clipboard
S_{n}=\frac{1288+28\delta _{0}}{2}
Use the distributive property to multiply 28 by 46+\delta _{0}.
S_{n}=644+14\delta _{0}
Divide each term of 1288+28\delta _{0} by 2 to get 644+14\delta _{0}.
S_{n}=\frac{1288+28\delta _{0}}{2}
Use the distributive property to multiply 28 by 46+\delta _{0}.
S_{n}=644+14\delta _{0}
Divide each term of 1288+28\delta _{0} by 2 to get 644+14\delta _{0}.
644+14\delta _{0}=S_{n}
Swap sides so that all variable terms are on the left hand side.
14\delta _{0}=S_{n}-644
Subtract 644 from both sides.
\frac{14\delta _{0}}{14}=\frac{S_{n}-644}{14}
Divide both sides by 14.
\delta _{0}=\frac{S_{n}-644}{14}
Dividing by 14 undoes the multiplication by 14.
\delta _{0}=\frac{S_{n}}{14}-46
Divide S_{n}-644 by 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}