Solve for S
S=\frac{25S_{2}}{121}
Solve for S_2
S_{2}=\frac{121S}{25}
Share
Copied to clipboard
S_{2}=S\left(1+\frac{6}{5}\right)^{2}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
S_{2}=S\times \left(\frac{11}{5}\right)^{2}
Add 1 and \frac{6}{5} to get \frac{11}{5}.
S_{2}=S\times \frac{121}{25}
Calculate \frac{11}{5} to the power of 2 and get \frac{121}{25}.
S\times \frac{121}{25}=S_{2}
Swap sides so that all variable terms are on the left hand side.
\frac{121}{25}S=S_{2}
The equation is in standard form.
\frac{\frac{121}{25}S}{\frac{121}{25}}=\frac{S_{2}}{\frac{121}{25}}
Divide both sides of the equation by \frac{121}{25}, which is the same as multiplying both sides by the reciprocal of the fraction.
S=\frac{S_{2}}{\frac{121}{25}}
Dividing by \frac{121}{25} undoes the multiplication by \frac{121}{25}.
S=\frac{25S_{2}}{121}
Divide S_{2} by \frac{121}{25} by multiplying S_{2} by the reciprocal of \frac{121}{25}.
S_{2}=S\left(1+\frac{6}{5}\right)^{2}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
S_{2}=S\times \left(\frac{11}{5}\right)^{2}
Add 1 and \frac{6}{5} to get \frac{11}{5}.
S_{2}=S\times \frac{121}{25}
Calculate \frac{11}{5} to the power of 2 and get \frac{121}{25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}