Solve for E
E=\frac{3}{25eSmn\omega }
n\neq 0\text{ and }\omega \neq 0\text{ and }m\neq 0\text{ and }S\neq 0
Solve for S
S=\frac{3}{25eEmn\omega }
n\neq 0\text{ and }\omega \neq 0\text{ and }m\neq 0\text{ and }E\neq 0
Share
Copied to clipboard
SEme\omega n=\frac{0.6}{5}
Calculate the square root of 25 and get 5.
SEme\omega n=\frac{6}{50}
Expand \frac{0.6}{5} by multiplying both numerator and the denominator by 10.
SEme\omega n=\frac{3}{25}
Reduce the fraction \frac{6}{50} to lowest terms by extracting and canceling out 2.
eSmn\omega E=\frac{3}{25}
The equation is in standard form.
\frac{eSmn\omega E}{eSmn\omega }=\frac{\frac{3}{25}}{eSmn\omega }
Divide both sides by Sme\omega n.
E=\frac{\frac{3}{25}}{eSmn\omega }
Dividing by Sme\omega n undoes the multiplication by Sme\omega n.
E=\frac{3}{25eSmn\omega }
Divide \frac{3}{25} by Sme\omega n.
SEme\omega n=\frac{0.6}{5}
Calculate the square root of 25 and get 5.
SEme\omega n=\frac{6}{50}
Expand \frac{0.6}{5} by multiplying both numerator and the denominator by 10.
SEme\omega n=\frac{3}{25}
Reduce the fraction \frac{6}{50} to lowest terms by extracting and canceling out 2.
eEmn\omega S=\frac{3}{25}
The equation is in standard form.
\frac{eEmn\omega S}{eEmn\omega }=\frac{\frac{3}{25}}{eEmn\omega }
Divide both sides by Eme\omega n.
S=\frac{\frac{3}{25}}{eEmn\omega }
Dividing by Eme\omega n undoes the multiplication by Eme\omega n.
S=\frac{3}{25eEmn\omega }
Divide \frac{3}{25} by Eme\omega n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}