Solve for A
\left\{\begin{matrix}A=\frac{Ph}{S-2}\text{, }&S\neq 2\\A\in \mathrm{R}\text{, }&\left(P=0\text{ or }h=0\right)\text{ and }S=2\end{matrix}\right.
Solve for P
\left\{\begin{matrix}P=\frac{A\left(S-2\right)}{h}\text{, }&h\neq 0\\P\in \mathrm{R}\text{, }&\left(A=0\text{ or }S=2\right)\text{ and }h=0\end{matrix}\right.
Share
Copied to clipboard
SA-2A=Ph
Subtract 2A from both sides.
\left(S-2\right)A=Ph
Combine all terms containing A.
\frac{\left(S-2\right)A}{S-2}=\frac{Ph}{S-2}
Divide both sides by S-2.
A=\frac{Ph}{S-2}
Dividing by S-2 undoes the multiplication by S-2.
2A+Ph=SA
Swap sides so that all variable terms are on the left hand side.
Ph=SA-2A
Subtract 2A from both sides.
hP=AS-2A
The equation is in standard form.
\frac{hP}{h}=\frac{A\left(S-2\right)}{h}
Divide both sides by h.
P=\frac{A\left(S-2\right)}{h}
Dividing by h undoes the multiplication by h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}