Solve for B (complex solution)
\left\{\begin{matrix}B=\frac{STaA^{2}}{418000000000000000000000q}\text{, }&q\neq 0\text{ and }A\neq 0\text{ and }T\neq 0\text{ and }a\neq 0\\B\in \mathrm{C}\text{, }&S=0\text{ and }q=0\text{ and }A\neq 0\text{ and }T\neq 0\text{ and }a\neq 0\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=\frac{STaA^{2}}{418000000000000000000000q}\text{, }&q\neq 0\text{ and }A\neq 0\text{ and }T\neq 0\text{ and }a\neq 0\\B\in \mathrm{R}\text{, }&S=0\text{ and }q=0\text{ and }A\neq 0\text{ and }T\neq 0\text{ and }a\neq 0\end{matrix}\right.
Solve for A (complex solution)
\left\{\begin{matrix}\\A\neq 0\text{, }&\text{unconditionally}\\A=-20000000000S^{-0.5}T^{-0.5}a^{-0.5}\sqrt{B}\sqrt{1045q}\text{; }A=20000000000S^{-0.5}T^{-0.5}a^{-0.5}\sqrt{B}\sqrt{1045q}\text{, }&q\neq 0\text{ and }B\neq 0\text{ and }a\neq 0\text{ and }T\neq 0\text{ and }S\neq 0\end{matrix}\right.
Share
Copied to clipboard
SAATa=a\times 4.18\times 10^{23}\times \frac{Bq}{a}
Multiply both sides of the equation by ATa, the least common multiple of AT,a.
SA^{2}Ta=a\times 4.18\times 10^{23}\times \frac{Bq}{a}
Multiply A and A to get A^{2}.
SA^{2}Ta=a\times 4.18\times 100000000000000000000000\times \frac{Bq}{a}
Calculate 10 to the power of 23 and get 100000000000000000000000.
SA^{2}Ta=a\times 418000000000000000000000\times \frac{Bq}{a}
Multiply 4.18 and 100000000000000000000000 to get 418000000000000000000000.
SA^{2}Ta=\frac{aBq}{a}\times 418000000000000000000000
Express a\times \frac{Bq}{a} as a single fraction.
SA^{2}Ta=Bq\times 418000000000000000000000
Cancel out a in both numerator and denominator.
Bq\times 418000000000000000000000=SA^{2}Ta
Swap sides so that all variable terms are on the left hand side.
418000000000000000000000qB=STaA^{2}
The equation is in standard form.
\frac{418000000000000000000000qB}{418000000000000000000000q}=\frac{STaA^{2}}{418000000000000000000000q}
Divide both sides by 418000000000000000000000q.
B=\frac{STaA^{2}}{418000000000000000000000q}
Dividing by 418000000000000000000000q undoes the multiplication by 418000000000000000000000q.
SAATa=a\times 4.18\times 10^{23}\times \frac{Bq}{a}
Multiply both sides of the equation by ATa, the least common multiple of AT,a.
SA^{2}Ta=a\times 4.18\times 10^{23}\times \frac{Bq}{a}
Multiply A and A to get A^{2}.
SA^{2}Ta=a\times 4.18\times 100000000000000000000000\times \frac{Bq}{a}
Calculate 10 to the power of 23 and get 100000000000000000000000.
SA^{2}Ta=a\times 418000000000000000000000\times \frac{Bq}{a}
Multiply 4.18 and 100000000000000000000000 to get 418000000000000000000000.
SA^{2}Ta=\frac{aBq}{a}\times 418000000000000000000000
Express a\times \frac{Bq}{a} as a single fraction.
SA^{2}Ta=Bq\times 418000000000000000000000
Cancel out a in both numerator and denominator.
Bq\times 418000000000000000000000=SA^{2}Ta
Swap sides so that all variable terms are on the left hand side.
418000000000000000000000qB=STaA^{2}
The equation is in standard form.
\frac{418000000000000000000000qB}{418000000000000000000000q}=\frac{STaA^{2}}{418000000000000000000000q}
Divide both sides by 418000000000000000000000q.
B=\frac{STaA^{2}}{418000000000000000000000q}
Dividing by 418000000000000000000000q undoes the multiplication by 418000000000000000000000q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}