Solve for x
x=5\sqrt{241}+105\approx 182.620873481
x=105-5\sqrt{241}\approx 27.379126519
Graph
Share
Copied to clipboard
210x-5000-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+210x-5000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-210±\sqrt{210^{2}-4\left(-1\right)\left(-5000\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 210 for b, and -5000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-210±\sqrt{44100-4\left(-1\right)\left(-5000\right)}}{2\left(-1\right)}
Square 210.
x=\frac{-210±\sqrt{44100+4\left(-5000\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-210±\sqrt{44100-20000}}{2\left(-1\right)}
Multiply 4 times -5000.
x=\frac{-210±\sqrt{24100}}{2\left(-1\right)}
Add 44100 to -20000.
x=\frac{-210±10\sqrt{241}}{2\left(-1\right)}
Take the square root of 24100.
x=\frac{-210±10\sqrt{241}}{-2}
Multiply 2 times -1.
x=\frac{10\sqrt{241}-210}{-2}
Now solve the equation x=\frac{-210±10\sqrt{241}}{-2} when ± is plus. Add -210 to 10\sqrt{241}.
x=105-5\sqrt{241}
Divide -210+10\sqrt{241} by -2.
x=\frac{-10\sqrt{241}-210}{-2}
Now solve the equation x=\frac{-210±10\sqrt{241}}{-2} when ± is minus. Subtract 10\sqrt{241} from -210.
x=5\sqrt{241}+105
Divide -210-10\sqrt{241} by -2.
x=105-5\sqrt{241} x=5\sqrt{241}+105
The equation is now solved.
210x-5000-x^{2}=0
Subtract x^{2} from both sides.
210x-x^{2}=5000
Add 5000 to both sides. Anything plus zero gives itself.
-x^{2}+210x=5000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+210x}{-1}=\frac{5000}{-1}
Divide both sides by -1.
x^{2}+\frac{210}{-1}x=\frac{5000}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-210x=\frac{5000}{-1}
Divide 210 by -1.
x^{2}-210x=-5000
Divide 5000 by -1.
x^{2}-210x+\left(-105\right)^{2}=-5000+\left(-105\right)^{2}
Divide -210, the coefficient of the x term, by 2 to get -105. Then add the square of -105 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-210x+11025=-5000+11025
Square -105.
x^{2}-210x+11025=6025
Add -5000 to 11025.
\left(x-105\right)^{2}=6025
Factor x^{2}-210x+11025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-105\right)^{2}}=\sqrt{6025}
Take the square root of both sides of the equation.
x-105=5\sqrt{241} x-105=-5\sqrt{241}
Simplify.
x=5\sqrt{241}+105 x=105-5\sqrt{241}
Add 105 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}