Skip to main content
Solve for G (complex solution)
Tick mark Image
Solve for G
Tick mark Image
Solve for S
Tick mark Image

Similar Problems from Web Search

Share

ut-\frac{1}{2}Gt^{2}=S
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}Gt^{2}=S-ut
Subtract ut from both sides.
\left(-\frac{t^{2}}{2}\right)G=S-tu
The equation is in standard form.
\frac{\left(-\frac{t^{2}}{2}\right)G}{-\frac{t^{2}}{2}}=\frac{S-tu}{-\frac{t^{2}}{2}}
Divide both sides by -\frac{1}{2}t^{2}.
G=\frac{S-tu}{-\frac{t^{2}}{2}}
Dividing by -\frac{1}{2}t^{2} undoes the multiplication by -\frac{1}{2}t^{2}.
G=-\frac{2\left(S-tu\right)}{t^{2}}
Divide S-ut by -\frac{1}{2}t^{2}.
ut-\frac{1}{2}Gt^{2}=S
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}Gt^{2}=S-ut
Subtract ut from both sides.
\left(-\frac{t^{2}}{2}\right)G=S-tu
The equation is in standard form.
\frac{\left(-\frac{t^{2}}{2}\right)G}{-\frac{t^{2}}{2}}=\frac{S-tu}{-\frac{t^{2}}{2}}
Divide both sides by -\frac{1}{2}t^{2}.
G=\frac{S-tu}{-\frac{t^{2}}{2}}
Dividing by -\frac{1}{2}t^{2} undoes the multiplication by -\frac{1}{2}t^{2}.
G=-\frac{2\left(S-tu\right)}{t^{2}}
Divide S-tu by -\frac{1}{2}t^{2}.