Solve for w
w=-\frac{\pi }{4y^{2}-S}
S\neq 4y^{2}
Solve for S
S=4y^{2}+\frac{\pi }{w}
w\neq 0
Share
Copied to clipboard
Sw=4y^{2}w+\pi
Variable w cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by w.
Sw-4y^{2}w=\pi
Subtract 4y^{2}w from both sides.
\left(S-4y^{2}\right)w=\pi
Combine all terms containing w.
\frac{\left(S-4y^{2}\right)w}{S-4y^{2}}=\frac{\pi }{S-4y^{2}}
Divide both sides by S-4y^{2}.
w=\frac{\pi }{S-4y^{2}}
Dividing by S-4y^{2} undoes the multiplication by S-4y^{2}.
w=\frac{\pi }{S-4y^{2}}\text{, }w\neq 0
Variable w cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}