Solve for S, L, W, H
S=84
L=6
W=3
H=2
Share
Copied to clipboard
84=4\times 6\times 3+2\times 3H
Consider the first equation. Insert the known values of variables into the equation.
84=24\times 3+6H
Do the multiplications.
84=72+6H
Multiply 24 and 3 to get 72.
72+6H=84
Swap sides so that all variable terms are on the left hand side.
6H=84-72
Subtract 72 from both sides.
6H=12
Subtract 72 from 84 to get 12.
H=\frac{12}{6}
Divide both sides by 6.
H=2
Divide 12 by 6 to get 2.
S=84 L=6 W=3 H=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}