Solve for L
\left\{\begin{matrix}L=\frac{S-2hw-2hz}{2w}\text{, }&w\neq 0\\L\in \mathrm{R}\text{, }&S=2hz\text{ and }w=0\end{matrix}\right.
Solve for S
S=2\left(hz+Lw+hw\right)
Share
Copied to clipboard
2Lw+2hw+2hz=S
Swap sides so that all variable terms are on the left hand side.
2Lw+2hz=S-2hw
Subtract 2hw from both sides.
2Lw=S-2hw-2hz
Subtract 2hz from both sides.
2wL=S-2hw-2hz
The equation is in standard form.
\frac{2wL}{2w}=\frac{S-2hw-2hz}{2w}
Divide both sides by 2w.
L=\frac{S-2hw-2hz}{2w}
Dividing by 2w undoes the multiplication by 2w.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}