Solve for p
p=7S-r
Solve for S
S=\frac{p+r}{7}
Share
Copied to clipboard
S=\frac{1}{7}r+\frac{1}{7}p
Divide each term of r+p by 7 to get \frac{1}{7}r+\frac{1}{7}p.
\frac{1}{7}r+\frac{1}{7}p=S
Swap sides so that all variable terms are on the left hand side.
\frac{1}{7}p=S-\frac{1}{7}r
Subtract \frac{1}{7}r from both sides.
\frac{1}{7}p=-\frac{r}{7}+S
The equation is in standard form.
\frac{\frac{1}{7}p}{\frac{1}{7}}=\frac{-\frac{r}{7}+S}{\frac{1}{7}}
Multiply both sides by 7.
p=\frac{-\frac{r}{7}+S}{\frac{1}{7}}
Dividing by \frac{1}{7} undoes the multiplication by \frac{1}{7}.
p=7S-r
Divide S-\frac{r}{7} by \frac{1}{7} by multiplying S-\frac{r}{7} by the reciprocal of \frac{1}{7}.
S=\frac{1}{7}r+\frac{1}{7}p
Divide each term of r+p by 7 to get \frac{1}{7}r+\frac{1}{7}p.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}