Solve for S
S=\frac{17\left(a_{1}+a_{9}+8d\right)}{2}
Solve for a_1
a_{1}=\frac{2S}{17}-a_{9}-8d
Share
Copied to clipboard
S=\frac{\left(a_{1}+a_{9}+8d\right)\times 17}{2}
Express \frac{a_{1}+a_{9}+8d}{2}\times 17 as a single fraction.
S=\frac{17a_{1}+17a_{9}+136d}{2}
Use the distributive property to multiply a_{1}+a_{9}+8d by 17.
S=\frac{17}{2}a_{1}+\frac{17}{2}a_{9}+68d
Divide each term of 17a_{1}+17a_{9}+136d by 2 to get \frac{17}{2}a_{1}+\frac{17}{2}a_{9}+68d.
S=\frac{\left(a_{1}+a_{9}+8d\right)\times 17}{2}
Express \frac{a_{1}+a_{9}+8d}{2}\times 17 as a single fraction.
S=\frac{17a_{1}+17a_{9}+136d}{2}
Use the distributive property to multiply a_{1}+a_{9}+8d by 17.
S=\frac{17}{2}a_{1}+\frac{17}{2}a_{9}+68d
Divide each term of 17a_{1}+17a_{9}+136d by 2 to get \frac{17}{2}a_{1}+\frac{17}{2}a_{9}+68d.
\frac{17}{2}a_{1}+\frac{17}{2}a_{9}+68d=S
Swap sides so that all variable terms are on the left hand side.
\frac{17}{2}a_{1}+68d=S-\frac{17}{2}a_{9}
Subtract \frac{17}{2}a_{9} from both sides.
\frac{17}{2}a_{1}=S-\frac{17}{2}a_{9}-68d
Subtract 68d from both sides.
\frac{17}{2}a_{1}=-\frac{17a_{9}}{2}+S-68d
The equation is in standard form.
\frac{\frac{17}{2}a_{1}}{\frac{17}{2}}=\frac{-\frac{17a_{9}}{2}+S-68d}{\frac{17}{2}}
Divide both sides of the equation by \frac{17}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
a_{1}=\frac{-\frac{17a_{9}}{2}+S-68d}{\frac{17}{2}}
Dividing by \frac{17}{2} undoes the multiplication by \frac{17}{2}.
a_{1}=\frac{2S}{17}-a_{9}-8d
Divide S-\frac{17a_{9}}{2}-68d by \frac{17}{2} by multiplying S-\frac{17a_{9}}{2}-68d by the reciprocal of \frac{17}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}