Solve for a
\left\{\begin{matrix}a=-\frac{S\left(r-1\right)}{1-r^{n}}\text{, }&\left(r=0\text{ and }n>0\right)\text{ or }\left(n\neq 0\text{ and }r\neq -1\text{ and }Denominator(n)\text{bmod}2=1\text{ and }r<0\right)\text{ or }\left(r<0\text{ and }Numerator(n)\text{bmod}2=1\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(n\neq 0\text{ and }r\neq 1\text{ and }r>0\right)\\a\in \mathrm{R}\text{, }&r\neq 1\text{ and }r\neq 0\text{ and }\left(n=0\text{ or }r<0\right)\text{ and }\left(r=-1\text{ or }n=0\right)\text{ and }Numerator(n)\text{bmod}2=0\text{ and }Denominator(n)\text{bmod}2=1\text{ and }S=0\end{matrix}\right.
Solve for S
S=-\frac{a\left(r^{n}-1\right)}{1-r}
\left(r>0\text{ and }r\neq 1\right)\text{ or }\left(n>0\text{ and }r=0\right)\text{ or }\left(Denominator(n)\text{bmod}2=1\text{ and }r<0\right)
Share
Copied to clipboard
S\left(-r+1\right)=a\left(1-r^{n}\right)
Multiply both sides of the equation by -r+1.
-Sr+S=a\left(1-r^{n}\right)
Use the distributive property to multiply S by -r+1.
-Sr+S=a-ar^{n}
Use the distributive property to multiply a by 1-r^{n}.
a-ar^{n}=-Sr+S
Swap sides so that all variable terms are on the left hand side.
\left(1-r^{n}\right)a=-Sr+S
Combine all terms containing a.
\left(1-r^{n}\right)a=S-Sr
The equation is in standard form.
\frac{\left(1-r^{n}\right)a}{1-r^{n}}=\frac{S-Sr}{1-r^{n}}
Divide both sides by 1-r^{n}.
a=\frac{S-Sr}{1-r^{n}}
Dividing by 1-r^{n} undoes the multiplication by 1-r^{n}.
a=\frac{S\left(1-r\right)}{1-r^{n}}
Divide -Sr+S by 1-r^{n}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}