Solve for S
S=\frac{15\left(a+b\right)}{2}
Solve for a
a=\frac{2S}{15}-b
Share
Copied to clipboard
S=\frac{\left(a+b\right)\times 15}{2}
Express \frac{a+b}{2}\times 15 as a single fraction.
S=\frac{15a+15b}{2}
Use the distributive property to multiply a+b by 15.
S=\frac{15}{2}a+\frac{15}{2}b
Divide each term of 15a+15b by 2 to get \frac{15}{2}a+\frac{15}{2}b.
S=\frac{\left(a+b\right)\times 15}{2}
Express \frac{a+b}{2}\times 15 as a single fraction.
S=\frac{15a+15b}{2}
Use the distributive property to multiply a+b by 15.
S=\frac{15}{2}a+\frac{15}{2}b
Divide each term of 15a+15b by 2 to get \frac{15}{2}a+\frac{15}{2}b.
\frac{15}{2}a+\frac{15}{2}b=S
Swap sides so that all variable terms are on the left hand side.
\frac{15}{2}a=S-\frac{15}{2}b
Subtract \frac{15}{2}b from both sides.
\frac{15}{2}a=-\frac{15b}{2}+S
The equation is in standard form.
\frac{\frac{15}{2}a}{\frac{15}{2}}=\frac{-\frac{15b}{2}+S}{\frac{15}{2}}
Divide both sides of the equation by \frac{15}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{-\frac{15b}{2}+S}{\frac{15}{2}}
Dividing by \frac{15}{2} undoes the multiplication by \frac{15}{2}.
a=\frac{2S}{15}-b
Divide S-\frac{15b}{2} by \frac{15}{2} by multiplying S-\frac{15b}{2} by the reciprocal of \frac{15}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}