Solve for N
N\neq 0
S=500m^{3}\text{ and }m\neq 0\text{ and }N\neq 0
Solve for S
S=500m^{3}
N\neq 0\text{ and }m\neq 0
Share
Copied to clipboard
S=\frac{38000N}{76\times \frac{N}{m^{3}}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
S=\frac{38000N}{\frac{76N}{m^{3}}}
Express 76\times \frac{N}{m^{3}} as a single fraction.
S=\frac{38000Nm^{3}}{76N}
Divide 38000N by \frac{76N}{m^{3}} by multiplying 38000N by the reciprocal of \frac{76N}{m^{3}}.
S=\frac{500Nm^{3}}{N}
Cancel out 76 in both numerator and denominator.
\frac{500Nm^{3}}{N}=S
Swap sides so that all variable terms are on the left hand side.
500Nm^{3}=SN
Variable N cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by N.
500Nm^{3}-SN=0
Subtract SN from both sides.
\left(500m^{3}-S\right)N=0
Combine all terms containing N.
N=0
Divide 0 by 500m^{3}-S.
N\in \emptyset
Variable N cannot be equal to 0.
S=\frac{38000N}{76\times \frac{N}{m^{3}}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
S=\frac{38000N}{\frac{76N}{m^{3}}}
Express 76\times \frac{N}{m^{3}} as a single fraction.
S=\frac{38000Nm^{3}}{76N}
Divide 38000N by \frac{76N}{m^{3}} by multiplying 38000N by the reciprocal of \frac{76N}{m^{3}}.
S=500m^{3}
Cancel out 76N in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}