Solve for S
S=-\frac{\sqrt{2}}{14}+\frac{2}{7}\approx 0.184699031
Assign S
S≔-\frac{\sqrt{2}}{14}+\frac{2}{7}
Share
Copied to clipboard
S=\frac{\sqrt{2}-4}{\left(\sqrt{2}+4\right)\left(\sqrt{2}-4\right)}
Rationalize the denominator of \frac{1}{\sqrt{2}+4} by multiplying numerator and denominator by \sqrt{2}-4.
S=\frac{\sqrt{2}-4}{\left(\sqrt{2}\right)^{2}-4^{2}}
Consider \left(\sqrt{2}+4\right)\left(\sqrt{2}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
S=\frac{\sqrt{2}-4}{2-16}
Square \sqrt{2}. Square 4.
S=\frac{\sqrt{2}-4}{-14}
Subtract 16 from 2 to get -14.
S=\frac{-\sqrt{2}+4}{14}
Multiply both numerator and denominator by -1.
S=-\frac{1}{14}\sqrt{2}+\frac{2}{7}
Divide each term of -\sqrt{2}+4 by 14 to get -\frac{1}{14}\sqrt{2}+\frac{2}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}