Solve for S
S=\frac{665cm^{2}}{2}
Solve for c
\left\{\begin{matrix}c=\frac{2S}{665m^{2}}\text{, }&m\neq 0\\c\in \mathrm{R}\text{, }&S=0\text{ and }m=0\end{matrix}\right.
Share
Copied to clipboard
S=\left(6\times 49+2\times \frac{22}{7}\times \left(\frac{7}{2}\right)^{2}-\frac{22}{7}\times \left(\frac{7}{2}\right)^{2}\right)cm^{2}
Calculate 7 to the power of 2 and get 49.
S=\left(294+2\times \frac{22}{7}\times \left(\frac{7}{2}\right)^{2}-\frac{22}{7}\times \left(\frac{7}{2}\right)^{2}\right)cm^{2}
Multiply 6 and 49 to get 294.
S=\left(294+\frac{44}{7}\times \left(\frac{7}{2}\right)^{2}-\frac{22}{7}\times \left(\frac{7}{2}\right)^{2}\right)cm^{2}
Multiply 2 and \frac{22}{7} to get \frac{44}{7}.
S=\left(294+\frac{44}{7}\times \frac{49}{4}-\frac{22}{7}\times \left(\frac{7}{2}\right)^{2}\right)cm^{2}
Calculate \frac{7}{2} to the power of 2 and get \frac{49}{4}.
S=\left(294+77-\frac{22}{7}\times \left(\frac{7}{2}\right)^{2}\right)cm^{2}
Multiply \frac{44}{7} and \frac{49}{4} to get 77.
S=\left(371-\frac{22}{7}\times \left(\frac{7}{2}\right)^{2}\right)cm^{2}
Add 294 and 77 to get 371.
S=\left(371-\frac{22}{7}\times \frac{49}{4}\right)cm^{2}
Calculate \frac{7}{2} to the power of 2 and get \frac{49}{4}.
S=\left(371-\frac{77}{2}\right)cm^{2}
Multiply \frac{22}{7} and \frac{49}{4} to get \frac{77}{2}.
S=\frac{665}{2}cm^{2}
Subtract \frac{77}{2} from 371 to get \frac{665}{2}.
S=\left(6\times 49+2\times \frac{22}{7}\times \left(\frac{7}{2}\right)^{2}-\frac{22}{7}\times \left(\frac{7}{2}\right)^{2}\right)cm^{2}
Calculate 7 to the power of 2 and get 49.
S=\left(294+2\times \frac{22}{7}\times \left(\frac{7}{2}\right)^{2}-\frac{22}{7}\times \left(\frac{7}{2}\right)^{2}\right)cm^{2}
Multiply 6 and 49 to get 294.
S=\left(294+\frac{44}{7}\times \left(\frac{7}{2}\right)^{2}-\frac{22}{7}\times \left(\frac{7}{2}\right)^{2}\right)cm^{2}
Multiply 2 and \frac{22}{7} to get \frac{44}{7}.
S=\left(294+\frac{44}{7}\times \frac{49}{4}-\frac{22}{7}\times \left(\frac{7}{2}\right)^{2}\right)cm^{2}
Calculate \frac{7}{2} to the power of 2 and get \frac{49}{4}.
S=\left(294+77-\frac{22}{7}\times \left(\frac{7}{2}\right)^{2}\right)cm^{2}
Multiply \frac{44}{7} and \frac{49}{4} to get 77.
S=\left(371-\frac{22}{7}\times \left(\frac{7}{2}\right)^{2}\right)cm^{2}
Add 294 and 77 to get 371.
S=\left(371-\frac{22}{7}\times \frac{49}{4}\right)cm^{2}
Calculate \frac{7}{2} to the power of 2 and get \frac{49}{4}.
S=\left(371-\frac{77}{2}\right)cm^{2}
Multiply \frac{22}{7} and \frac{49}{4} to get \frac{77}{2}.
S=\frac{665}{2}cm^{2}
Subtract \frac{77}{2} from 371 to get \frac{665}{2}.
\frac{665}{2}cm^{2}=S
Swap sides so that all variable terms are on the left hand side.
\frac{665m^{2}}{2}c=S
The equation is in standard form.
\frac{2\times \frac{665m^{2}}{2}c}{665m^{2}}=\frac{2S}{665m^{2}}
Divide both sides by \frac{665}{2}m^{2}.
c=\frac{2S}{665m^{2}}
Dividing by \frac{665}{2}m^{2} undoes the multiplication by \frac{665}{2}m^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}