Solve for S
S = \frac{1565843807963601546865877749122462330445204766504937997324779090192906619556580834841203555820606666926759164155408141012118702142296774870969664416612663293322271188634047971}{3295163032920035185459242585677485235658520287317994030252421702669666064972891025383853120081100800000000000000000000000000000000000000000000000000000000000000000000000} = 475194\frac{2.105698198415851 \times 10^{168}}{3.295163032920035 \times 10^{168}} \approx 475194.639027015
Assign S
S≔\frac{1565843807963601546865877749122462330445204766504937997324779090192906619556580834841203555820606666926759164155408141012118702142296774870969664416612663293322271188634047971}{3295163032920035185459242585677485235658520287317994030252421702669666064972891025383853120081100800000000000000000000000000000000000000000000000000000000000000000000000}
Share
Copied to clipboard
S=5673\times \frac{\left(1+\frac{5}{1200}\right)^{72}-1}{\frac{0.05}{12}}
Expand \frac{0.05}{12} by multiplying both numerator and the denominator by 100.
S=5673\times \frac{\left(1+\frac{1}{240}\right)^{72}-1}{\frac{0.05}{12}}
Reduce the fraction \frac{5}{1200} to lowest terms by extracting and canceling out 5.
S=5673\times \frac{\left(\frac{241}{240}\right)^{72}-1}{\frac{0.05}{12}}
Add 1 and \frac{1}{240} to get \frac{241}{240}.
S=5673\times \frac{\frac{3200568048939655130921388532191471194341085831884787535374963663041623670194855327192928215691923335876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000}-1}{\frac{0.05}{12}}
Calculate \frac{241}{240} to the power of 72 and get \frac{3200568048939655130921388532191471194341085831884787535374963663041623670194855327192928215691923335876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000}.
S=5673\times \frac{\frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{0.05}{12}}
Subtract 1 from \frac{3200568048939655130921388532191471194341085831884787535374963663041623670194855327192928215691923335876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000} to get \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000}.
S=5673\times \frac{\frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{5}{1200}}
Expand \frac{0.05}{12} by multiplying both numerator and the denominator by 100.
S=5673\times \frac{\frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{240}}
Reduce the fraction \frac{5}{1200} to lowest terms by extracting and canceling out 5.
S=5673\times \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000}\times 240
Divide \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000} by \frac{1}{240} by multiplying \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000} by the reciprocal of \frac{1}{240}.
S=5673\times \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{9885489098760105556377727757032455706975560861953982090757265108008998194918673076151559360243302400000000000000000000000000000000000000000000000000000000000000000000000}
Multiply \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000} and 240 to get \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{9885489098760105556377727757032455706975560861953982090757265108008998194918673076151559360243302400000000000000000000000000000000000000000000000000000000000000000000000}.
S=\frac{1565843807963601546865877749122462330445204766504937997324779090192906619556580834841203555820606666926759164155408141012118702142296774870969664416612663293322271188634047971}{3295163032920035185459242585677485235658520287317994030252421702669666064972891025383853120081100800000000000000000000000000000000000000000000000000000000000000000000000}
Multiply 5673 and \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{9885489098760105556377727757032455706975560861953982090757265108008998194918673076151559360243302400000000000000000000000000000000000000000000000000000000000000000000000} to get \frac{1565843807963601546865877749122462330445204766504937997324779090192906619556580834841203555820606666926759164155408141012118702142296774870969664416612663293322271188634047971}{3295163032920035185459242585677485235658520287317994030252421702669666064972891025383853120081100800000000000000000000000000000000000000000000000000000000000000000000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}