Skip to main content
Solve for S
Tick mark Image
Assign S
Tick mark Image

Similar Problems from Web Search

Share

S=5673\times \frac{\left(1+\frac{5}{1200}\right)^{72}-1}{\frac{0.05}{12}}
Expand \frac{0.05}{12} by multiplying both numerator and the denominator by 100.
S=5673\times \frac{\left(1+\frac{1}{240}\right)^{72}-1}{\frac{0.05}{12}}
Reduce the fraction \frac{5}{1200} to lowest terms by extracting and canceling out 5.
S=5673\times \frac{\left(\frac{241}{240}\right)^{72}-1}{\frac{0.05}{12}}
Add 1 and \frac{1}{240} to get \frac{241}{240}.
S=5673\times \frac{\frac{3200568048939655130921388532191471194341085831884787535374963663041623670194855327192928215691923335876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000}-1}{\frac{0.05}{12}}
Calculate \frac{241}{240} to the power of 72 and get \frac{3200568048939655130921388532191471194341085831884787535374963663041623670194855327192928215691923335876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000}.
S=5673\times \frac{\frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{0.05}{12}}
Subtract 1 from \frac{3200568048939655130921388532191471194341085831884787535374963663041623670194855327192928215691923335876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000} to get \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000}.
S=5673\times \frac{\frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{5}{1200}}
Expand \frac{0.05}{12} by multiplying both numerator and the denominator by 100.
S=5673\times \frac{\frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{240}}
Reduce the fraction \frac{5}{1200} to lowest terms by extracting and canceling out 5.
S=5673\times \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000}\times 240
Divide \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000} by \frac{1}{240} by multiplying \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000} by the reciprocal of \frac{1}{240}.
S=5673\times \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{9885489098760105556377727757032455706975560861953982090757265108008998194918673076151559360243302400000000000000000000000000000000000000000000000000000000000000000000000}
Multiply \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{2372517383702425333530654661687789369674134606868955701781743625922159566780481538276374246458392576000000000000000000000000000000000000000000000000000000000000000000000000} and 240 to get \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{9885489098760105556377727757032455706975560861953982090757265108008998194918673076151559360243302400000000000000000000000000000000000000000000000000000000000000000000000}.
S=\frac{1565843807963601546865877749122462330445204766504937997324779090192906619556580834841203555820606666926759164155408141012118702142296774870969664416612663293322271188634047971}{3295163032920035185459242585677485235658520287317994030252421702669666064972891025383853120081100800000000000000000000000000000000000000000000000000000000000000000000000}
Multiply 5673 and \frac{828050665237229797390733870503681824666951225015831833593220037119464103414373788916553969233530759876657410975890079858338816574456253236895644852783005443322195234602881}{9885489098760105556377727757032455706975560861953982090757265108008998194918673076151559360243302400000000000000000000000000000000000000000000000000000000000000000000000} to get \frac{1565843807963601546865877749122462330445204766504937997324779090192906619556580834841203555820606666926759164155408141012118702142296774870969664416612663293322271188634047971}{3295163032920035185459242585677485235658520287317994030252421702669666064972891025383853120081100800000000000000000000000000000000000000000000000000000000000000000000000}.