Solve for R
R=\frac{8200\Omega }{143T_{2}}
T_{2}\neq 0\text{ and }\Omega \neq 0
Solve for T_2
T_{2}=\frac{8200\Omega }{143R}
R\neq 0\text{ and }\Omega \neq 0
Share
Copied to clipboard
RT_{2}=\frac{1}{\frac{1}{200\Omega }+\frac{2}{200\Omega }+\frac{1}{410\Omega }}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 200\Omega and 100\Omega is 200\Omega . Multiply \frac{1}{100\Omega } times \frac{2}{2}.
RT_{2}=\frac{1}{\frac{3}{200\Omega }+\frac{1}{410\Omega }}
Since \frac{1}{200\Omega } and \frac{2}{200\Omega } have the same denominator, add them by adding their numerators. Add 1 and 2 to get 3.
RT_{2}=\frac{1}{\frac{3\times 41}{8200\Omega }+\frac{20}{8200\Omega }}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 200\Omega and 410\Omega is 8200\Omega . Multiply \frac{3}{200\Omega } times \frac{41}{41}. Multiply \frac{1}{410\Omega } times \frac{20}{20}.
RT_{2}=\frac{1}{\frac{3\times 41+20}{8200\Omega }}
Since \frac{3\times 41}{8200\Omega } and \frac{20}{8200\Omega } have the same denominator, add them by adding their numerators.
RT_{2}=\frac{1}{\frac{123+20}{8200\Omega }}
Do the multiplications in 3\times 41+20.
RT_{2}=\frac{1}{\frac{143}{8200\Omega }}
Do the calculations in 123+20.
RT_{2}=\frac{8200\Omega }{143}
Divide 1 by \frac{143}{8200\Omega } by multiplying 1 by the reciprocal of \frac{143}{8200\Omega }.
143RT_{2}=8200\Omega
Multiply both sides of the equation by 143.
143T_{2}R=8200\Omega
The equation is in standard form.
\frac{143T_{2}R}{143T_{2}}=\frac{8200\Omega }{143T_{2}}
Divide both sides by 143T_{2}.
R=\frac{8200\Omega }{143T_{2}}
Dividing by 143T_{2} undoes the multiplication by 143T_{2}.
RT_{2}=\frac{1}{\frac{1}{200\Omega }+\frac{2}{200\Omega }+\frac{1}{410\Omega }}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 200\Omega and 100\Omega is 200\Omega . Multiply \frac{1}{100\Omega } times \frac{2}{2}.
RT_{2}=\frac{1}{\frac{3}{200\Omega }+\frac{1}{410\Omega }}
Since \frac{1}{200\Omega } and \frac{2}{200\Omega } have the same denominator, add them by adding their numerators. Add 1 and 2 to get 3.
RT_{2}=\frac{1}{\frac{3\times 41}{8200\Omega }+\frac{20}{8200\Omega }}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 200\Omega and 410\Omega is 8200\Omega . Multiply \frac{3}{200\Omega } times \frac{41}{41}. Multiply \frac{1}{410\Omega } times \frac{20}{20}.
RT_{2}=\frac{1}{\frac{3\times 41+20}{8200\Omega }}
Since \frac{3\times 41}{8200\Omega } and \frac{20}{8200\Omega } have the same denominator, add them by adding their numerators.
RT_{2}=\frac{1}{\frac{123+20}{8200\Omega }}
Do the multiplications in 3\times 41+20.
RT_{2}=\frac{1}{\frac{143}{8200\Omega }}
Do the calculations in 123+20.
RT_{2}=\frac{8200\Omega }{143}
Divide 1 by \frac{143}{8200\Omega } by multiplying 1 by the reciprocal of \frac{143}{8200\Omega }.
143RT_{2}=8200\Omega
Multiply both sides of the equation by 143.
\frac{143RT_{2}}{143R}=\frac{8200\Omega }{143R}
Divide both sides by 143R.
T_{2}=\frac{8200\Omega }{143R}
Dividing by 143R undoes the multiplication by 143R.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}