Solve for B
\left\{\begin{matrix}B=-\frac{R_{1}-R_{n}}{R_{1}\Delta \alpha }\text{, }&R_{1}\neq 0\text{ and }\Delta \neq 0\text{ and }\alpha \neq 0\\B\in \mathrm{R}\text{, }&\left(R_{n}=0\text{ and }R_{1}=0\right)\text{ or }\left(R_{n}=R_{1}\text{ and }\Delta =0\text{ and }R_{1}\neq 0\right)\text{ or }\left(R_{n}=R_{1}\text{ and }\alpha =0\text{ and }\Delta \neq 0\text{ and }R_{1}\neq 0\right)\end{matrix}\right.
Solve for R_1
\left\{\begin{matrix}R_{1}=\frac{R_{n}}{B\Delta \alpha +1}\text{, }&B=0\text{ or }\Delta =0\text{ or }\alpha \neq -\frac{1}{B\Delta }\\R_{1}\in \mathrm{R}\text{, }&R_{n}=0\text{ and }\alpha =-\frac{1}{B\Delta }\text{ and }B\neq 0\text{ and }\Delta \neq 0\end{matrix}\right.
Share
Copied to clipboard
R_{n}=R_{1}+R_{1}\alpha \Delta B
Use the distributive property to multiply R_{1} by 1+\alpha \Delta B.
R_{1}+R_{1}\alpha \Delta B=R_{n}
Swap sides so that all variable terms are on the left hand side.
R_{1}\alpha \Delta B=R_{n}-R_{1}
Subtract R_{1} from both sides.
R_{1}\Delta \alpha B=R_{n}-R_{1}
The equation is in standard form.
\frac{R_{1}\Delta \alpha B}{R_{1}\Delta \alpha }=\frac{R_{n}-R_{1}}{R_{1}\Delta \alpha }
Divide both sides by R_{1}\alpha \Delta .
B=\frac{R_{n}-R_{1}}{R_{1}\Delta \alpha }
Dividing by R_{1}\alpha \Delta undoes the multiplication by R_{1}\alpha \Delta .
R_{n}=R_{1}+R_{1}\alpha \Delta B
Use the distributive property to multiply R_{1} by 1+\alpha \Delta B.
R_{1}+R_{1}\alpha \Delta B=R_{n}
Swap sides so that all variable terms are on the left hand side.
\left(1+\alpha \Delta B\right)R_{1}=R_{n}
Combine all terms containing R_{1}.
\left(B\Delta \alpha +1\right)R_{1}=R_{n}
The equation is in standard form.
\frac{\left(B\Delta \alpha +1\right)R_{1}}{B\Delta \alpha +1}=\frac{R_{n}}{B\Delta \alpha +1}
Divide both sides by 1+\alpha \Delta B.
R_{1}=\frac{R_{n}}{B\Delta \alpha +1}
Dividing by 1+\alpha \Delta B undoes the multiplication by 1+\alpha \Delta B.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}