Solve for R_T
R_{T} = \frac{24}{13} = 1\frac{11}{13} \approx 1.846153846
Assign R_T
R_{T}≔\frac{24}{13}
Share
Copied to clipboard
R_{T}=\frac{1}{\frac{2}{8}+\frac{1}{8}+\frac{1}{6}}
Least common multiple of 4 and 8 is 8. Convert \frac{1}{4} and \frac{1}{8} to fractions with denominator 8.
R_{T}=\frac{1}{\frac{2+1}{8}+\frac{1}{6}}
Since \frac{2}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
R_{T}=\frac{1}{\frac{3}{8}+\frac{1}{6}}
Add 2 and 1 to get 3.
R_{T}=\frac{1}{\frac{9}{24}+\frac{4}{24}}
Least common multiple of 8 and 6 is 24. Convert \frac{3}{8} and \frac{1}{6} to fractions with denominator 24.
R_{T}=\frac{1}{\frac{9+4}{24}}
Since \frac{9}{24} and \frac{4}{24} have the same denominator, add them by adding their numerators.
R_{T}=\frac{1}{\frac{13}{24}}
Add 9 and 4 to get 13.
R_{T}=1\times \frac{24}{13}
Divide 1 by \frac{13}{24} by multiplying 1 by the reciprocal of \frac{13}{24}.
R_{T}=\frac{24}{13}
Multiply 1 and \frac{24}{13} to get \frac{24}{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}