Solve for R_T
R_{T} = \frac{12}{11} = 1\frac{1}{11} \approx 1.090909091
Assign R_T
R_{T}≔\frac{12}{11}
Share
Copied to clipboard
R_{T}=\frac{1}{\frac{3}{12}+\frac{2}{12}+\frac{1}{2}}
Least common multiple of 4 and 6 is 12. Convert \frac{1}{4} and \frac{1}{6} to fractions with denominator 12.
R_{T}=\frac{1}{\frac{3+2}{12}+\frac{1}{2}}
Since \frac{3}{12} and \frac{2}{12} have the same denominator, add them by adding their numerators.
R_{T}=\frac{1}{\frac{5}{12}+\frac{1}{2}}
Add 3 and 2 to get 5.
R_{T}=\frac{1}{\frac{5}{12}+\frac{6}{12}}
Least common multiple of 12 and 2 is 12. Convert \frac{5}{12} and \frac{1}{2} to fractions with denominator 12.
R_{T}=\frac{1}{\frac{5+6}{12}}
Since \frac{5}{12} and \frac{6}{12} have the same denominator, add them by adding their numerators.
R_{T}=\frac{1}{\frac{11}{12}}
Add 5 and 6 to get 11.
R_{T}=1\times \frac{12}{11}
Divide 1 by \frac{11}{12} by multiplying 1 by the reciprocal of \frac{11}{12}.
R_{T}=\frac{12}{11}
Multiply 1 and \frac{12}{11} to get \frac{12}{11}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}