Solve for Q
\left\{\begin{matrix}Q=-\frac{Q_{1}-Q_{3}}{R}\text{, }&R\neq 0\\Q\in \mathrm{R}\text{, }&Q_{3}=Q_{1}\text{ and }R=0\end{matrix}\right.
Solve for Q_1
Q_{1}=Q_{3}-QR
Share
Copied to clipboard
RQ=Q_{3}-Q_{1}
The equation is in standard form.
\frac{RQ}{R}=\frac{Q_{3}-Q_{1}}{R}
Divide both sides by R.
Q=\frac{Q_{3}-Q_{1}}{R}
Dividing by R undoes the multiplication by R.
Q_{3}-Q_{1}=RQ
Swap sides so that all variable terms are on the left hand side.
-Q_{1}=RQ-Q_{3}
Subtract Q_{3} from both sides.
-Q_{1}=QR-Q_{3}
The equation is in standard form.
\frac{-Q_{1}}{-1}=\frac{QR-Q_{3}}{-1}
Divide both sides by -1.
Q_{1}=\frac{QR-Q_{3}}{-1}
Dividing by -1 undoes the multiplication by -1.
Q_{1}=Q_{3}-QR
Divide QR-Q_{3} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}