Evaluate (complex solution)
R_{1}=\frac{U^{2}}{P}\text{ and }\frac{U^{2}}{P}=\frac{1}{100}\text{ and }\Omega =\frac{1}{1600}
Solve for Ω
\Omega =\frac{1}{1600}=0.000625
R_{1}=\frac{1}{100}\text{ and }P=100U^{2}\text{ and }U\neq 0
Solve for U
U=-\sqrt{PR_{1}}
U=\sqrt{PR_{1}}\text{, }R_{1}=\frac{1}{100}\text{ and }\Omega =\frac{1}{1600}\text{ and }P>0
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}