Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

9\left(-p^{2}+2000p\right)
Factor out 9.
p\left(-p+2000\right)
Consider -p^{2}+2000p. Factor out p.
9p\left(-p+2000\right)
Rewrite the complete factored expression.
-9p^{2}+18000p=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-18000±\sqrt{18000^{2}}}{2\left(-9\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-18000±18000}{2\left(-9\right)}
Take the square root of 18000^{2}.
p=\frac{-18000±18000}{-18}
Multiply 2 times -9.
p=\frac{0}{-18}
Now solve the equation p=\frac{-18000±18000}{-18} when ± is plus. Add -18000 to 18000.
p=0
Divide 0 by -18.
p=-\frac{36000}{-18}
Now solve the equation p=\frac{-18000±18000}{-18} when ± is minus. Subtract 18000 from -18000.
p=2000
Divide -36000 by -18.
-9p^{2}+18000p=-9p\left(p-2000\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 2000 for x_{2}.