Solve for k
k=\frac{8x-\left(Rx\right)^{2}-4}{4x}
x\neq 0
Solve for R (complex solution)
R=-\frac{2i\sqrt{kx-2x+1}}{x}
R=\frac{2i\sqrt{kx-2x+1}}{x}\text{, }x\neq 0
Solve for R
R=\frac{2\sqrt{-kx+2x-1}}{|x|}
R=-\frac{2\sqrt{-kx+2x-1}}{|x|}\text{, }\left(x=-\frac{1}{k-2}\text{ and }k\neq 2\right)\text{ or }\left(x\geq -\frac{1}{k-2}\text{ and }k<2\text{ and }x\neq 0\right)\text{ or }\left(k>2\text{ and }x\leq -\frac{1}{k-2}\text{ and }x\neq 0\right)
Graph
Share
Copied to clipboard
-8x+4kx+4=-R^{2}x^{2}
Subtract R^{2}x^{2} from both sides. Anything subtracted from zero gives its negation.
4kx+4=-R^{2}x^{2}+8x
Add 8x to both sides.
4kx=-R^{2}x^{2}+8x-4
Subtract 4 from both sides.
4xk=-R^{2}x^{2}+8x-4
The equation is in standard form.
\frac{4xk}{4x}=\frac{-R^{2}x^{2}+8x-4}{4x}
Divide both sides by 4x.
k=\frac{-R^{2}x^{2}+8x-4}{4x}
Dividing by 4x undoes the multiplication by 4x.
k=-\frac{xR^{2}}{4}+2-\frac{1}{x}
Divide -R^{2}x^{2}+8x-4 by 4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}