Solve for B
B=\frac{715081081R}{688590081}
Solve for R
R=\frac{688590081B}{715081081}
Share
Copied to clipboard
R=B\times \left(\frac{-104.964}{1+105.964}\right)^{2}
Subtract 105.964 from 1 to get -104.964.
R=B\times \left(\frac{-104.964}{106.964}\right)^{2}
Add 1 and 105.964 to get 106.964.
R=B\times \left(\frac{-104964}{106964}\right)^{2}
Expand \frac{-104.964}{106.964} by multiplying both numerator and the denominator by 1000.
R=B\left(-\frac{26241}{26741}\right)^{2}
Reduce the fraction \frac{-104964}{106964} to lowest terms by extracting and canceling out 4.
R=B\times \frac{688590081}{715081081}
Calculate -\frac{26241}{26741} to the power of 2 and get \frac{688590081}{715081081}.
B\times \frac{688590081}{715081081}=R
Swap sides so that all variable terms are on the left hand side.
\frac{688590081}{715081081}B=R
The equation is in standard form.
\frac{\frac{688590081}{715081081}B}{\frac{688590081}{715081081}}=\frac{R}{\frac{688590081}{715081081}}
Divide both sides of the equation by \frac{688590081}{715081081}, which is the same as multiplying both sides by the reciprocal of the fraction.
B=\frac{R}{\frac{688590081}{715081081}}
Dividing by \frac{688590081}{715081081} undoes the multiplication by \frac{688590081}{715081081}.
B=\frac{715081081R}{688590081}
Divide R by \frac{688590081}{715081081} by multiplying R by the reciprocal of \frac{688590081}{715081081}.
R=B\times \left(\frac{-104.964}{1+105.964}\right)^{2}
Subtract 105.964 from 1 to get -104.964.
R=B\times \left(\frac{-104.964}{106.964}\right)^{2}
Add 1 and 105.964 to get 106.964.
R=B\times \left(\frac{-104964}{106964}\right)^{2}
Expand \frac{-104.964}{106.964} by multiplying both numerator and the denominator by 1000.
R=B\left(-\frac{26241}{26741}\right)^{2}
Reduce the fraction \frac{-104964}{106964} to lowest terms by extracting and canceling out 4.
R=B\times \frac{688590081}{715081081}
Calculate -\frac{26241}{26741} to the power of 2 and get \frac{688590081}{715081081}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}