Solve for A
A=-\frac{V^{2}}{B}+R
B\neq 0
Solve for B
\left\{\begin{matrix}B=-\frac{V^{2}}{A-R}\text{, }&V\neq 0\text{ and }R\neq A\\B\neq 0\text{, }&R=A\text{ and }V=0\end{matrix}\right.
Share
Copied to clipboard
RB=BA+V^{2}
Multiply both sides of the equation by B.
BA+V^{2}=RB
Swap sides so that all variable terms are on the left hand side.
BA=RB-V^{2}
Subtract V^{2} from both sides.
BA=BR-V^{2}
The equation is in standard form.
\frac{BA}{B}=\frac{BR-V^{2}}{B}
Divide both sides by B.
A=\frac{BR-V^{2}}{B}
Dividing by B undoes the multiplication by B.
A=-\frac{V^{2}}{B}+R
Divide BR-V^{2} by B.
RB=BA+V^{2}
Variable B cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by B.
RB-BA=V^{2}
Subtract BA from both sides.
\left(R-A\right)B=V^{2}
Combine all terms containing B.
\frac{\left(R-A\right)B}{R-A}=\frac{V^{2}}{R-A}
Divide both sides by R-A.
B=\frac{V^{2}}{R-A}
Dividing by R-A undoes the multiplication by R-A.
B=\frac{V^{2}}{R-A}\text{, }B\neq 0
Variable B cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}