Solve for R
R=3d\left(4-d\right)
Solve for d
d=-\frac{\sqrt{36-3R}}{3}+2
d=\frac{\sqrt{36-3R}}{3}+2\text{, }R\leq 12
Share
Copied to clipboard
R=-3\left(d^{2}-4d+4\right)+12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(d-2\right)^{2}.
R=-3d^{2}+12d-12+12
Use the distributive property to multiply -3 by d^{2}-4d+4.
R=-3d^{2}+12d
Add -12 and 12 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}