Solve for P (complex solution)
P=\sqrt{ax}-R
Solve for P
P=\sqrt{ax}-R
\left(x\geq 0\text{ and }a\geq 0\right)\text{ or }\left(a\leq 0\text{ and }x\leq 0\right)
Solve for R
R=\sqrt{ax}-P
\left(x\geq 0\text{ and }a\geq 0\right)\text{ or }\left(a\leq 0\text{ and }x\leq 0\right)
Graph
Share
Copied to clipboard
\sqrt{ax}-P=R
Swap sides so that all variable terms are on the left hand side.
-P=R-\sqrt{ax}
Subtract \sqrt{ax} from both sides.
-P=-\sqrt{ax}+R
The equation is in standard form.
\frac{-P}{-1}=\frac{-\sqrt{ax}+R}{-1}
Divide both sides by -1.
P=\frac{-\sqrt{ax}+R}{-1}
Dividing by -1 undoes the multiplication by -1.
P=\sqrt{ax}-R
Divide R-\sqrt{ax} by -1.
\sqrt{ax}-P=R
Swap sides so that all variable terms are on the left hand side.
-P=R-\sqrt{ax}
Subtract \sqrt{ax} from both sides.
-P=-\sqrt{ax}+R
The equation is in standard form.
\frac{-P}{-1}=\frac{-\sqrt{ax}+R}{-1}
Divide both sides by -1.
P=\frac{-\sqrt{ax}+R}{-1}
Dividing by -1 undoes the multiplication by -1.
P=\sqrt{ax}-R
Divide R-\sqrt{ax} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}