Solve for Q (complex solution)
\left\{\begin{matrix}Q=\frac{Rz^{2}}{xy}\text{, }&y\neq 0\text{ and }x\neq 0\text{ and }z\neq 0\\Q\in \mathrm{C}\text{, }&\left(y=0\text{ or }x=0\right)\text{ and }R=0\text{ and }z\neq 0\end{matrix}\right.
Solve for Q
\left\{\begin{matrix}Q=\frac{Rz^{2}}{xy}\text{, }&y\neq 0\text{ and }x\neq 0\text{ and }z\neq 0\\Q\in \mathrm{R}\text{, }&\left(y=0\text{ or }x=0\right)\text{ and }R=0\text{ and }z\neq 0\end{matrix}\right.
Solve for R
R=\frac{Qxy}{z^{2}}
z\neq 0
Share
Copied to clipboard
Rz^{2}=xyQ
Multiply both sides of the equation by z^{2}.
xyQ=Rz^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{xyQ}{xy}=\frac{Rz^{2}}{xy}
Divide both sides by xy.
Q=\frac{Rz^{2}}{xy}
Dividing by xy undoes the multiplication by xy.
Rz^{2}=xyQ
Multiply both sides of the equation by z^{2}.
xyQ=Rz^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{xyQ}{xy}=\frac{Rz^{2}}{xy}
Divide both sides by xy.
Q=\frac{Rz^{2}}{xy}
Dividing by xy undoes the multiplication by xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}