Solve for P
P=\frac{Qs-80}{20}
Solve for Q
\left\{\begin{matrix}Q=\frac{20\left(P+4\right)}{s}\text{, }&s\neq 0\\Q\in \mathrm{R}\text{, }&P=-4\text{ and }s=0\end{matrix}\right.
Share
Copied to clipboard
80+20P=Qs
Swap sides so that all variable terms are on the left hand side.
20P=Qs-80
Subtract 80 from both sides.
\frac{20P}{20}=\frac{Qs-80}{20}
Divide both sides by 20.
P=\frac{Qs-80}{20}
Dividing by 20 undoes the multiplication by 20.
P=\frac{Qs}{20}-4
Divide Qs-80 by 20.
sQ=20P+80
The equation is in standard form.
\frac{sQ}{s}=\frac{20P+80}{s}
Divide both sides by s.
Q=\frac{20P+80}{s}
Dividing by s undoes the multiplication by s.
Q=\frac{20\left(P+4\right)}{s}
Divide 80+20P by s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}