Solve for P
P=-\frac{Qd}{3}+10
Solve for Q
\left\{\begin{matrix}Q=-\frac{3\left(P-10\right)}{d}\text{, }&d\neq 0\\Q\in \mathrm{R}\text{, }&P=10\text{ and }d=0\end{matrix}\right.
Share
Copied to clipboard
30-3P=Qd
Swap sides so that all variable terms are on the left hand side.
-3P=Qd-30
Subtract 30 from both sides.
\frac{-3P}{-3}=\frac{Qd-30}{-3}
Divide both sides by -3.
P=\frac{Qd-30}{-3}
Dividing by -3 undoes the multiplication by -3.
P=-\frac{Qd}{3}+10
Divide Qd-30 by -3.
dQ=30-3P
The equation is in standard form.
\frac{dQ}{d}=\frac{30-3P}{d}
Divide both sides by d.
Q=\frac{30-3P}{d}
Dividing by d undoes the multiplication by d.
Q=\frac{3\left(10-P\right)}{d}
Divide 30-3P by d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}