Solve for Q_n
Q_{n}=7n+6
Solve for n
n=\frac{Q_{n}-6}{7}
Share
Copied to clipboard
Q_{n}=13+7n-7
Use the distributive property to multiply n-1 by 7.
Q_{n}=6+7n
Subtract 7 from 13 to get 6.
Q_{n}=13+7n-7
Use the distributive property to multiply n-1 by 7.
Q_{n}=6+7n
Subtract 7 from 13 to get 6.
6+7n=Q_{n}
Swap sides so that all variable terms are on the left hand side.
7n=Q_{n}-6
Subtract 6 from both sides.
\frac{7n}{7}=\frac{Q_{n}-6}{7}
Divide both sides by 7.
n=\frac{Q_{n}-6}{7}
Dividing by 7 undoes the multiplication by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}