Solve for G
G=\frac{-15N+16P_{A}-6P_{B}+Q_{1}-600}{15}
Solve for M (complex solution)
M\in \mathrm{C}
Q_{1}=15G+15N-16P_{A}+6P_{B}+600
Solve for M
M\in \mathrm{R}
Q_{1}=15G+15N-16P_{A}+6P_{B}+600
Share
Copied to clipboard
Q_{1}=600-4P_{A}-0\times 3M-12P_{A}+15G+6P_{B}+15N
Multiply 0 and 0 to get 0.
Q_{1}=600-4P_{A}-0M-12P_{A}+15G+6P_{B}+15N
Multiply 0 and 3 to get 0.
Q_{1}=600-4P_{A}-0-12P_{A}+15G+6P_{B}+15N
Anything times zero gives zero.
600-4P_{A}-0-12P_{A}+15G+6P_{B}+15N=Q_{1}
Swap sides so that all variable terms are on the left hand side.
-12P_{A}+15G+6P_{B}+15N=Q_{1}-\left(600-4P_{A}-0\right)
Subtract 600-4P_{A}-0 from both sides.
15G+6P_{B}+15N=Q_{1}-\left(600-4P_{A}-0\right)+12P_{A}
Add 12P_{A} to both sides.
15G+15N=Q_{1}-\left(600-4P_{A}-0\right)+12P_{A}-6P_{B}
Subtract 6P_{B} from both sides.
15G=Q_{1}-\left(600-4P_{A}-0\right)+12P_{A}-6P_{B}-15N
Subtract 15N from both sides.
15G=Q_{1}-\left(-4P_{A}+600\right)-15N-6P_{B}+12P_{A}
Reorder the terms.
15G=Q_{1}+4P_{A}-600-15N-6P_{B}+12P_{A}
To find the opposite of -4P_{A}+600, find the opposite of each term.
15G=Q_{1}+16P_{A}-600-15N-6P_{B}
Combine 4P_{A} and 12P_{A} to get 16P_{A}.
15G=-15N+16P_{A}-6P_{B}+Q_{1}-600
The equation is in standard form.
\frac{15G}{15}=\frac{-15N+16P_{A}-6P_{B}+Q_{1}-600}{15}
Divide both sides by 15.
G=\frac{-15N+16P_{A}-6P_{B}+Q_{1}-600}{15}
Dividing by 15 undoes the multiplication by 15.
G=\frac{Q_{1}}{15}+\frac{16P_{A}}{15}-\frac{2P_{B}}{5}-N-40
Divide Q_{1}+16P_{A}-600-15N-6P_{B} by 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}