Solve for G
G=\frac{M}{500}+\frac{Q_{1}}{15}+\frac{16P_{A}}{15}-\frac{N}{10}-\frac{2P_{B}}{5}-40
Solve for M
M=-\frac{100Q_{1}}{3}-\frac{1600P_{A}}{3}+50N+200P_{B}+500G+20000
Share
Copied to clipboard
Q_{1}=600-16P_{A}-0.03M+15G+6P_{B}+1.5N
Combine -4P_{A} and -12P_{A} to get -16P_{A}.
600-16P_{A}-0.03M+15G+6P_{B}+1.5N=Q_{1}
Swap sides so that all variable terms are on the left hand side.
-16P_{A}-0.03M+15G+6P_{B}+1.5N=Q_{1}-600
Subtract 600 from both sides.
-0.03M+15G+6P_{B}+1.5N=Q_{1}-600+16P_{A}
Add 16P_{A} to both sides.
15G+6P_{B}+1.5N=Q_{1}-600+16P_{A}+0.03M
Add 0.03M to both sides.
15G+1.5N=Q_{1}-600+16P_{A}+0.03M-6P_{B}
Subtract 6P_{B} from both sides.
15G=Q_{1}-600+16P_{A}+0.03M-6P_{B}-1.5N
Subtract 1.5N from both sides.
15G=\frac{3M}{100}-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-600
The equation is in standard form.
\frac{15G}{15}=\frac{\frac{3M}{100}-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-600}{15}
Divide both sides by 15.
G=\frac{\frac{3M}{100}-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-600}{15}
Dividing by 15 undoes the multiplication by 15.
G=\frac{M}{500}+\frac{Q_{1}}{15}+\frac{16P_{A}}{15}-\frac{N}{10}-\frac{2P_{B}}{5}-40
Divide Q_{1}-600+16P_{A}+\frac{3M}{100}-6P_{B}-\frac{3N}{2} by 15.
Q_{1}=600-16P_{A}-0.03M+15G+6P_{B}+1.5N
Combine -4P_{A} and -12P_{A} to get -16P_{A}.
600-16P_{A}-0.03M+15G+6P_{B}+1.5N=Q_{1}
Swap sides so that all variable terms are on the left hand side.
-16P_{A}-0.03M+15G+6P_{B}+1.5N=Q_{1}-600
Subtract 600 from both sides.
-0.03M+15G+6P_{B}+1.5N=Q_{1}-600+16P_{A}
Add 16P_{A} to both sides.
-0.03M+6P_{B}+1.5N=Q_{1}-600+16P_{A}-15G
Subtract 15G from both sides.
-0.03M+1.5N=Q_{1}-600+16P_{A}-15G-6P_{B}
Subtract 6P_{B} from both sides.
-0.03M=Q_{1}-600+16P_{A}-15G-6P_{B}-1.5N
Subtract 1.5N from both sides.
-0.03M=-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-15G-600
The equation is in standard form.
\frac{-0.03M}{-0.03}=\frac{-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-15G-600}{-0.03}
Divide both sides of the equation by -0.03, which is the same as multiplying both sides by the reciprocal of the fraction.
M=\frac{-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-15G-600}{-0.03}
Dividing by -0.03 undoes the multiplication by -0.03.
M=-\frac{100Q_{1}}{3}-\frac{1600P_{A}}{3}+50N+200P_{B}+500G+20000
Divide Q_{1}-600+16P_{A}-15G-6P_{B}-\frac{3N}{2} by -0.03 by multiplying Q_{1}-600+16P_{A}-15G-6P_{B}-\frac{3N}{2} by the reciprocal of -0.03.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}