Solve for F
F=-\left(-Q\left(Q-V\right)+P\right)
Q\neq 0
Solve for P
P=-\left(-Q\left(Q-V\right)+F\right)
Q\neq 0
Share
Copied to clipboard
QQ-\left(P+F\right)\times 1=VQ
Multiply both sides of the equation by Q.
Q^{2}-\left(P+F\right)\times 1=VQ
Multiply Q and Q to get Q^{2}.
Q^{2}-\left(P+F\right)=VQ
Use the distributive property to multiply P+F by 1.
Q^{2}-P-F=VQ
To find the opposite of P+F, find the opposite of each term.
-P-F=VQ-Q^{2}
Subtract Q^{2} from both sides.
-F=VQ-Q^{2}+P
Add P to both sides.
-F=P-Q^{2}+QV
The equation is in standard form.
\frac{-F}{-1}=\frac{P-Q^{2}+QV}{-1}
Divide both sides by -1.
F=\frac{P-Q^{2}+QV}{-1}
Dividing by -1 undoes the multiplication by -1.
F=-\left(P-Q^{2}+QV\right)
Divide VQ-Q^{2}+P by -1.
QQ-\left(P+F\right)\times 1=VQ
Multiply both sides of the equation by Q.
Q^{2}-\left(P+F\right)\times 1=VQ
Multiply Q and Q to get Q^{2}.
Q^{2}-\left(P+F\right)=VQ
Use the distributive property to multiply P+F by 1.
Q^{2}-P-F=VQ
To find the opposite of P+F, find the opposite of each term.
-P-F=VQ-Q^{2}
Subtract Q^{2} from both sides.
-P=VQ-Q^{2}+F
Add F to both sides.
-P=F-Q^{2}+QV
The equation is in standard form.
\frac{-P}{-1}=\frac{F-Q^{2}+QV}{-1}
Divide both sides by -1.
P=\frac{F-Q^{2}+QV}{-1}
Dividing by -1 undoes the multiplication by -1.
P=-\left(F-Q^{2}+QV\right)
Divide VQ-Q^{2}+F by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}