Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(5x^{2}-5x-1)
Combine 3x^{2} and 2x^{2} to get 5x^{2}.
5x^{2}-5x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 5\left(-1\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 5\left(-1\right)}}{2\times 5}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-20\left(-1\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-5\right)±\sqrt{25+20}}{2\times 5}
Multiply -20 times -1.
x=\frac{-\left(-5\right)±\sqrt{45}}{2\times 5}
Add 25 to 20.
x=\frac{-\left(-5\right)±3\sqrt{5}}{2\times 5}
Take the square root of 45.
x=\frac{5±3\sqrt{5}}{2\times 5}
The opposite of -5 is 5.
x=\frac{5±3\sqrt{5}}{10}
Multiply 2 times 5.
x=\frac{3\sqrt{5}+5}{10}
Now solve the equation x=\frac{5±3\sqrt{5}}{10} when ± is plus. Add 5 to 3\sqrt{5}.
x=\frac{3\sqrt{5}}{10}+\frac{1}{2}
Divide 5+3\sqrt{5} by 10.
x=\frac{5-3\sqrt{5}}{10}
Now solve the equation x=\frac{5±3\sqrt{5}}{10} when ± is minus. Subtract 3\sqrt{5} from 5.
x=-\frac{3\sqrt{5}}{10}+\frac{1}{2}
Divide 5-3\sqrt{5} by 10.
5x^{2}-5x-1=5\left(x-\left(\frac{3\sqrt{5}}{10}+\frac{1}{2}\right)\right)\left(x-\left(-\frac{3\sqrt{5}}{10}+\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{2}+\frac{3\sqrt{5}}{10} for x_{1} and \frac{1}{2}-\frac{3\sqrt{5}}{10} for x_{2}.
5x^{2}-5x-1
Combine 3x^{2} and 2x^{2} to get 5x^{2}.