Solve for Q
Q=\frac{5}{2\left(5x+1\right)}
x\neq -\frac{1}{5}
Solve for x
x=-\frac{1}{5}+\frac{1}{2Q}
Q\neq 0
Graph
Share
Copied to clipboard
Qx+\frac{1}{5}Q+\frac{1}{4}=\frac{3}{4}
Use the distributive property to multiply Q by x+\frac{1}{5}.
Qx+\frac{1}{5}Q=\frac{3}{4}-\frac{1}{4}
Subtract \frac{1}{4} from both sides.
Qx+\frac{1}{5}Q=\frac{1}{2}
Subtract \frac{1}{4} from \frac{3}{4} to get \frac{1}{2}.
\left(x+\frac{1}{5}\right)Q=\frac{1}{2}
Combine all terms containing Q.
\frac{\left(x+\frac{1}{5}\right)Q}{x+\frac{1}{5}}=\frac{\frac{1}{2}}{x+\frac{1}{5}}
Divide both sides by x+\frac{1}{5}.
Q=\frac{\frac{1}{2}}{x+\frac{1}{5}}
Dividing by x+\frac{1}{5} undoes the multiplication by x+\frac{1}{5}.
Q=\frac{5}{2\left(5x+1\right)}
Divide \frac{1}{2} by x+\frac{1}{5}.
Qx+\frac{1}{5}Q+\frac{1}{4}=\frac{3}{4}
Use the distributive property to multiply Q by x+\frac{1}{5}.
Qx+\frac{1}{4}=\frac{3}{4}-\frac{1}{5}Q
Subtract \frac{1}{5}Q from both sides.
Qx=\frac{3}{4}-\frac{1}{5}Q-\frac{1}{4}
Subtract \frac{1}{4} from both sides.
Qx=\frac{1}{2}-\frac{1}{5}Q
Subtract \frac{1}{4} from \frac{3}{4} to get \frac{1}{2}.
Qx=-\frac{Q}{5}+\frac{1}{2}
The equation is in standard form.
\frac{Qx}{Q}=\frac{-\frac{Q}{5}+\frac{1}{2}}{Q}
Divide both sides by Q.
x=\frac{-\frac{Q}{5}+\frac{1}{2}}{Q}
Dividing by Q undoes the multiplication by Q.
x=-\frac{1}{5}+\frac{1}{2Q}
Divide \frac{1}{2}-\frac{Q}{5} by Q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}