Skip to main content
Solve for R (complex solution)
Tick mark Image
Solve for R
Tick mark Image
Solve for Q
Tick mark Image

Similar Problems from Web Search

Share

Q\times 10000n=S\left(\frac{1}{n}-\frac{1}{10000}-\left(e-R\right)\right)\times 10000n
Multiply both sides of the equation by 10000n, the least common multiple of n,10000.
Q\times 10000n=S\left(\frac{1}{n}-\frac{1}{10000}-e+R\right)\times 10000n
To find the opposite of e-R, find the opposite of each term.
Q\times 10000n=S\left(\frac{10000}{10000n}-\frac{n}{10000n}-e+R\right)\times 10000n
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n and 10000 is 10000n. Multiply \frac{1}{n} times \frac{10000}{10000}. Multiply \frac{1}{10000} times \frac{n}{n}.
Q\times 10000n=S\left(\frac{10000-n}{10000n}-e+R\right)\times 10000n
Since \frac{10000}{10000n} and \frac{n}{10000n} have the same denominator, subtract them by subtracting their numerators.
Q\times 10000n=S\left(\frac{10000-n}{10000n}+\frac{\left(-e+R\right)\times 10000n}{10000n}\right)\times 10000n
To add or subtract expressions, expand them to make their denominators the same. Multiply -e+R times \frac{10000n}{10000n}.
Q\times 10000n=S\times \frac{10000-n+\left(-e+R\right)\times 10000n}{10000n}\times 10000n
Since \frac{10000-n}{10000n} and \frac{\left(-e+R\right)\times 10000n}{10000n} have the same denominator, add them by adding their numerators.
Q\times 10000n=S\times \frac{10000-n-10000en+10000Rn}{10000n}\times 10000n
Do the multiplications in 10000-n+\left(-e+R\right)\times 10000n.
Q\times 10000n=\frac{S\left(10000-n-10000en+10000Rn\right)}{10000n}\times 10000n
Express S\times \frac{10000-n-10000en+10000Rn}{10000n} as a single fraction.
Q\times 10000n=\frac{S\left(10000-n-10000en+10000Rn\right)\times 10000}{10000n}n
Express \frac{S\left(10000-n-10000en+10000Rn\right)}{10000n}\times 10000 as a single fraction.
Q\times 10000n=\frac{S\left(10000Rn-10000en-n+10000\right)}{n}n
Cancel out 10000 in both numerator and denominator.
Q\times 10000n=\frac{S\left(10000Rn-10000en-n+10000\right)n}{n}
Express \frac{S\left(10000Rn-10000en-n+10000\right)}{n}n as a single fraction.
Q\times 10000n=S\left(10000Rn-10000en-n+10000\right)
Cancel out n in both numerator and denominator.
Q\times 10000n=10000SRn-10000Sen-Sn+10000S
Use the distributive property to multiply S by 10000Rn-10000en-n+10000.
10000SRn-10000Sen-Sn+10000S=Q\times 10000n
Swap sides so that all variable terms are on the left hand side.
10000SRn-Sn+10000S=Q\times 10000n+10000Sen
Add 10000Sen to both sides.
10000SRn+10000S=Q\times 10000n+10000Sen+Sn
Add Sn to both sides.
10000SRn=Q\times 10000n+10000Sen+Sn-10000S
Subtract 10000S from both sides.
10000SnR=Sn+10000eSn+10000Qn-10000S
The equation is in standard form.
\frac{10000SnR}{10000Sn}=\frac{Sn+10000eSn+10000Qn-10000S}{10000Sn}
Divide both sides by 10000Sn.
R=\frac{Sn+10000eSn+10000Qn-10000S}{10000Sn}
Dividing by 10000Sn undoes the multiplication by 10000Sn.
R=\frac{Q}{S}+e+\frac{1}{10000}-\frac{1}{n}
Divide 10000Qn+10000Sen+Sn-10000S by 10000Sn.
Q\times 10000n=S\left(\frac{1}{n}-\frac{1}{10000}-\left(e-R\right)\right)\times 10000n
Multiply both sides of the equation by 10000n, the least common multiple of n,10000.
Q\times 10000n=S\left(\frac{1}{n}-\frac{1}{10000}-e+R\right)\times 10000n
To find the opposite of e-R, find the opposite of each term.
Q\times 10000n=S\left(\frac{10000}{10000n}-\frac{n}{10000n}-e+R\right)\times 10000n
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n and 10000 is 10000n. Multiply \frac{1}{n} times \frac{10000}{10000}. Multiply \frac{1}{10000} times \frac{n}{n}.
Q\times 10000n=S\left(\frac{10000-n}{10000n}-e+R\right)\times 10000n
Since \frac{10000}{10000n} and \frac{n}{10000n} have the same denominator, subtract them by subtracting their numerators.
Q\times 10000n=S\left(\frac{10000-n}{10000n}+\frac{\left(-e+R\right)\times 10000n}{10000n}\right)\times 10000n
To add or subtract expressions, expand them to make their denominators the same. Multiply -e+R times \frac{10000n}{10000n}.
Q\times 10000n=S\times \frac{10000-n+\left(-e+R\right)\times 10000n}{10000n}\times 10000n
Since \frac{10000-n}{10000n} and \frac{\left(-e+R\right)\times 10000n}{10000n} have the same denominator, add them by adding their numerators.
Q\times 10000n=S\times \frac{10000-n-10000en+10000Rn}{10000n}\times 10000n
Do the multiplications in 10000-n+\left(-e+R\right)\times 10000n.
Q\times 10000n=\frac{S\left(10000-n-10000en+10000Rn\right)}{10000n}\times 10000n
Express S\times \frac{10000-n-10000en+10000Rn}{10000n} as a single fraction.
Q\times 10000n=\frac{S\left(10000-n-10000en+10000Rn\right)\times 10000}{10000n}n
Express \frac{S\left(10000-n-10000en+10000Rn\right)}{10000n}\times 10000 as a single fraction.
Q\times 10000n=\frac{S\left(10000Rn-10000en-n+10000\right)}{n}n
Cancel out 10000 in both numerator and denominator.
Q\times 10000n=\frac{S\left(10000Rn-10000en-n+10000\right)n}{n}
Express \frac{S\left(10000Rn-10000en-n+10000\right)}{n}n as a single fraction.
Q\times 10000n=S\left(10000Rn-10000en-n+10000\right)
Cancel out n in both numerator and denominator.
Q\times 10000n=10000SRn-10000Sen-Sn+10000S
Use the distributive property to multiply S by 10000Rn-10000en-n+10000.
10000SRn-10000Sen-Sn+10000S=Q\times 10000n
Swap sides so that all variable terms are on the left hand side.
10000SRn-Sn+10000S=Q\times 10000n+10000Sen
Add 10000Sen to both sides.
10000SRn+10000S=Q\times 10000n+10000Sen+Sn
Add Sn to both sides.
10000SRn=Q\times 10000n+10000Sen+Sn-10000S
Subtract 10000S from both sides.
10000SnR=Sn+10000eSn+10000Qn-10000S
The equation is in standard form.
\frac{10000SnR}{10000Sn}=\frac{Sn+10000eSn+10000Qn-10000S}{10000Sn}
Divide both sides by 10000Sn.
R=\frac{Sn+10000eSn+10000Qn-10000S}{10000Sn}
Dividing by 10000Sn undoes the multiplication by 10000Sn.
R=\frac{Q}{S}+e+\frac{1}{10000}-\frac{1}{n}
Divide 10000Qn+10000Sen+Sn-10000S by 10000Sn.