Solve for R (complex solution)
\left\{\begin{matrix}R=\frac{Sn+10000eSn+10000Qn-10000S}{10000Sn}\text{, }&S\neq 0\text{ and }n\neq 0\\R\in \mathrm{C}\text{, }&Q=0\text{ and }S=0\text{ and }n\neq 0\end{matrix}\right.
Solve for R
\left\{\begin{matrix}R=\frac{Sn+10000eSn+10000Qn-10000S}{10000Sn}\text{, }&S\neq 0\text{ and }n\neq 0\\R\in \mathrm{R}\text{, }&Q=0\text{ and }S=0\text{ and }n\neq 0\end{matrix}\right.
Solve for Q
Q=RS-eS-\frac{S}{10000}+\frac{S}{n}
n\neq 0
Share
Copied to clipboard
Q\times 10000n=S\left(\frac{1}{n}-\frac{1}{10000}-\left(e-R\right)\right)\times 10000n
Multiply both sides of the equation by 10000n, the least common multiple of n,10000.
Q\times 10000n=S\left(\frac{1}{n}-\frac{1}{10000}-e+R\right)\times 10000n
To find the opposite of e-R, find the opposite of each term.
Q\times 10000n=S\left(\frac{10000}{10000n}-\frac{n}{10000n}-e+R\right)\times 10000n
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n and 10000 is 10000n. Multiply \frac{1}{n} times \frac{10000}{10000}. Multiply \frac{1}{10000} times \frac{n}{n}.
Q\times 10000n=S\left(\frac{10000-n}{10000n}-e+R\right)\times 10000n
Since \frac{10000}{10000n} and \frac{n}{10000n} have the same denominator, subtract them by subtracting their numerators.
Q\times 10000n=S\left(\frac{10000-n}{10000n}+\frac{\left(-e+R\right)\times 10000n}{10000n}\right)\times 10000n
To add or subtract expressions, expand them to make their denominators the same. Multiply -e+R times \frac{10000n}{10000n}.
Q\times 10000n=S\times \frac{10000-n+\left(-e+R\right)\times 10000n}{10000n}\times 10000n
Since \frac{10000-n}{10000n} and \frac{\left(-e+R\right)\times 10000n}{10000n} have the same denominator, add them by adding their numerators.
Q\times 10000n=S\times \frac{10000-n-10000en+10000Rn}{10000n}\times 10000n
Do the multiplications in 10000-n+\left(-e+R\right)\times 10000n.
Q\times 10000n=\frac{S\left(10000-n-10000en+10000Rn\right)}{10000n}\times 10000n
Express S\times \frac{10000-n-10000en+10000Rn}{10000n} as a single fraction.
Q\times 10000n=\frac{S\left(10000-n-10000en+10000Rn\right)\times 10000}{10000n}n
Express \frac{S\left(10000-n-10000en+10000Rn\right)}{10000n}\times 10000 as a single fraction.
Q\times 10000n=\frac{S\left(10000Rn-10000en-n+10000\right)}{n}n
Cancel out 10000 in both numerator and denominator.
Q\times 10000n=\frac{S\left(10000Rn-10000en-n+10000\right)n}{n}
Express \frac{S\left(10000Rn-10000en-n+10000\right)}{n}n as a single fraction.
Q\times 10000n=S\left(10000Rn-10000en-n+10000\right)
Cancel out n in both numerator and denominator.
Q\times 10000n=10000SRn-10000Sen-Sn+10000S
Use the distributive property to multiply S by 10000Rn-10000en-n+10000.
10000SRn-10000Sen-Sn+10000S=Q\times 10000n
Swap sides so that all variable terms are on the left hand side.
10000SRn-Sn+10000S=Q\times 10000n+10000Sen
Add 10000Sen to both sides.
10000SRn+10000S=Q\times 10000n+10000Sen+Sn
Add Sn to both sides.
10000SRn=Q\times 10000n+10000Sen+Sn-10000S
Subtract 10000S from both sides.
10000SnR=Sn+10000eSn+10000Qn-10000S
The equation is in standard form.
\frac{10000SnR}{10000Sn}=\frac{Sn+10000eSn+10000Qn-10000S}{10000Sn}
Divide both sides by 10000Sn.
R=\frac{Sn+10000eSn+10000Qn-10000S}{10000Sn}
Dividing by 10000Sn undoes the multiplication by 10000Sn.
R=\frac{Q}{S}+e+\frac{1}{10000}-\frac{1}{n}
Divide 10000Qn+10000Sen+Sn-10000S by 10000Sn.
Q\times 10000n=S\left(\frac{1}{n}-\frac{1}{10000}-\left(e-R\right)\right)\times 10000n
Multiply both sides of the equation by 10000n, the least common multiple of n,10000.
Q\times 10000n=S\left(\frac{1}{n}-\frac{1}{10000}-e+R\right)\times 10000n
To find the opposite of e-R, find the opposite of each term.
Q\times 10000n=S\left(\frac{10000}{10000n}-\frac{n}{10000n}-e+R\right)\times 10000n
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n and 10000 is 10000n. Multiply \frac{1}{n} times \frac{10000}{10000}. Multiply \frac{1}{10000} times \frac{n}{n}.
Q\times 10000n=S\left(\frac{10000-n}{10000n}-e+R\right)\times 10000n
Since \frac{10000}{10000n} and \frac{n}{10000n} have the same denominator, subtract them by subtracting their numerators.
Q\times 10000n=S\left(\frac{10000-n}{10000n}+\frac{\left(-e+R\right)\times 10000n}{10000n}\right)\times 10000n
To add or subtract expressions, expand them to make their denominators the same. Multiply -e+R times \frac{10000n}{10000n}.
Q\times 10000n=S\times \frac{10000-n+\left(-e+R\right)\times 10000n}{10000n}\times 10000n
Since \frac{10000-n}{10000n} and \frac{\left(-e+R\right)\times 10000n}{10000n} have the same denominator, add them by adding their numerators.
Q\times 10000n=S\times \frac{10000-n-10000en+10000Rn}{10000n}\times 10000n
Do the multiplications in 10000-n+\left(-e+R\right)\times 10000n.
Q\times 10000n=\frac{S\left(10000-n-10000en+10000Rn\right)}{10000n}\times 10000n
Express S\times \frac{10000-n-10000en+10000Rn}{10000n} as a single fraction.
Q\times 10000n=\frac{S\left(10000-n-10000en+10000Rn\right)\times 10000}{10000n}n
Express \frac{S\left(10000-n-10000en+10000Rn\right)}{10000n}\times 10000 as a single fraction.
Q\times 10000n=\frac{S\left(10000Rn-10000en-n+10000\right)}{n}n
Cancel out 10000 in both numerator and denominator.
Q\times 10000n=\frac{S\left(10000Rn-10000en-n+10000\right)n}{n}
Express \frac{S\left(10000Rn-10000en-n+10000\right)}{n}n as a single fraction.
Q\times 10000n=S\left(10000Rn-10000en-n+10000\right)
Cancel out n in both numerator and denominator.
Q\times 10000n=10000SRn-10000Sen-Sn+10000S
Use the distributive property to multiply S by 10000Rn-10000en-n+10000.
10000SRn-10000Sen-Sn+10000S=Q\times 10000n
Swap sides so that all variable terms are on the left hand side.
10000SRn-Sn+10000S=Q\times 10000n+10000Sen
Add 10000Sen to both sides.
10000SRn+10000S=Q\times 10000n+10000Sen+Sn
Add Sn to both sides.
10000SRn=Q\times 10000n+10000Sen+Sn-10000S
Subtract 10000S from both sides.
10000SnR=Sn+10000eSn+10000Qn-10000S
The equation is in standard form.
\frac{10000SnR}{10000Sn}=\frac{Sn+10000eSn+10000Qn-10000S}{10000Sn}
Divide both sides by 10000Sn.
R=\frac{Sn+10000eSn+10000Qn-10000S}{10000Sn}
Dividing by 10000Sn undoes the multiplication by 10000Sn.
R=\frac{Q}{S}+e+\frac{1}{10000}-\frac{1}{n}
Divide 10000Qn+10000Sen+Sn-10000S by 10000Sn.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}