Solve for Q_0
Q_{0}=Qe^{at}
Solve for Q
Q=\frac{Q_{0}}{e^{at}}
Share
Copied to clipboard
Q_{0}e^{\left(-a\right)t}=Q
Swap sides so that all variable terms are on the left hand side.
Q_{0}e^{-at}=Q
Reorder the terms.
\frac{1}{e^{at}}Q_{0}=Q
The equation is in standard form.
\frac{\frac{1}{e^{at}}Q_{0}e^{at}}{1}=\frac{Qe^{at}}{1}
Divide both sides by e^{-at}.
Q_{0}=\frac{Qe^{at}}{1}
Dividing by e^{-at} undoes the multiplication by e^{-at}.
Q_{0}=Qe^{at}
Divide Q by e^{-at}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}