Solve for P (complex solution)
\left\{\begin{matrix}P=-\frac{\left(\frac{e^{i\alpha -i\beta }-1}{Q}\right)^{2}}{e^{i\alpha -i\beta }}\text{, }&Q\neq 0\\P\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }\alpha =2\pi n_{1}+\beta \text{ and }Q=0\end{matrix}\right.
Solve for P
\left\{\begin{matrix}P=-\frac{2\left(\sin(\alpha )\sin(\beta )+\cos(\alpha )\cos(\beta )-1\right)}{Q^{2}}\text{, }&Q\neq 0\\P\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }\alpha =2\pi n_{1}+\beta \text{ and }Q=0\end{matrix}\right.
Solve for Q (complex solution)
\left\{\begin{matrix}Q=-iP^{-\frac{1}{2}}e^{\frac{i\beta -i\alpha }{2}}\left(e^{i\alpha -i\beta }-1\right)\text{; }Q=iP^{-\frac{1}{2}}e^{\frac{i\beta -i\alpha }{2}}\left(e^{i\alpha -i\beta }-1\right)\text{, }&P\neq 0\\Q\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }\alpha =2\pi n_{1}+\beta \text{ and }P=0\end{matrix}\right.
Share
Copied to clipboard
PQ^{2}=2-2\left(\cos(\alpha )\cos(\beta )+\sin(\alpha )\sin(\beta )\right)
Multiply -1 and 2 to get -2.
PQ^{2}=2-2\cos(\alpha )\cos(\beta )-2\sin(\alpha )\sin(\beta )
Use the distributive property to multiply -2 by \cos(\alpha )\cos(\beta )+\sin(\alpha )\sin(\beta ).
Q^{2}P=-2\sin(\alpha )\sin(\beta )-2\cos(\alpha )\cos(\beta )+2
The equation is in standard form.
\frac{Q^{2}P}{Q^{2}}=\frac{2\left(-\cos(\alpha -\beta )+1\right)}{Q^{2}}
Divide both sides by Q^{2}.
P=\frac{2\left(-\cos(\alpha -\beta )+1\right)}{Q^{2}}
Dividing by Q^{2} undoes the multiplication by Q^{2}.
PQ^{2}=2-2\left(\cos(\alpha )\cos(\beta )+\sin(\alpha )\sin(\beta )\right)
Multiply -1 and 2 to get -2.
PQ^{2}=2-2\cos(\alpha )\cos(\beta )-2\sin(\alpha )\sin(\beta )
Use the distributive property to multiply -2 by \cos(\alpha )\cos(\beta )+\sin(\alpha )\sin(\beta ).
Q^{2}P=-2\sin(\alpha )\sin(\beta )-2\cos(\alpha )\cos(\beta )+2
The equation is in standard form.
\frac{Q^{2}P}{Q^{2}}=\frac{2\left(-\cos(\alpha -\beta )+1\right)}{Q^{2}}
Divide both sides by Q^{2}.
P=\frac{2\left(-\cos(\alpha -\beta )+1\right)}{Q^{2}}
Dividing by Q^{2} undoes the multiplication by Q^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}