Skip to main content
Solve for P (complex solution)
Tick mark Image
Solve for a (complex solution)
Tick mark Image
Solve for P
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

Pap-Paq+d\left(p+q\right)\left(p-q\right)-d\left(p+q\right)=0
Use the distributive property to multiply Pa by p-q.
Pap-Paq+\left(dp+dq\right)\left(p-q\right)-d\left(p+q\right)=0
Use the distributive property to multiply d by p+q.
Pap-Paq+dp^{2}-dq^{2}-d\left(p+q\right)=0
Use the distributive property to multiply dp+dq by p-q and combine like terms.
Pap-Paq+dp^{2}-dq^{2}-\left(dp+dq\right)=0
Use the distributive property to multiply d by p+q.
Pap-Paq+dp^{2}-dq^{2}-dp-dq=0
To find the opposite of dp+dq, find the opposite of each term.
Pap-Paq-dq^{2}-dp-dq=-dp^{2}
Subtract dp^{2} from both sides. Anything subtracted from zero gives its negation.
Pap-Paq-dp-dq=-dp^{2}+dq^{2}
Add dq^{2} to both sides.
Pap-Paq-dq=-dp^{2}+dq^{2}+dp
Add dp to both sides.
Pap-Paq=-dp^{2}+dq^{2}+dp+dq
Add dq to both sides.
Pap-Paq=-dp^{2}+dp+dq^{2}+dq
Reorder the terms.
\left(ap-aq\right)P=-dp^{2}+dp+dq^{2}+dq
Combine all terms containing P.
\left(ap-aq\right)P=dq+dq^{2}+dp-dp^{2}
The equation is in standard form.
\frac{\left(ap-aq\right)P}{ap-aq}=-\frac{d\left(p-q-1\right)\left(p+q\right)}{ap-aq}
Divide both sides by ap-aq.
P=-\frac{d\left(p-q-1\right)\left(p+q\right)}{ap-aq}
Dividing by ap-aq undoes the multiplication by ap-aq.
P=-\frac{d\left(p-q-1\right)\left(p+q\right)}{a\left(p-q\right)}
Divide -d\left(-1+p-q\right)\left(p+q\right) by ap-aq.
Pap-Paq+d\left(p+q\right)\left(p-q\right)-d\left(p+q\right)=0
Use the distributive property to multiply Pa by p-q.
Pap-Paq+\left(dp+dq\right)\left(p-q\right)-d\left(p+q\right)=0
Use the distributive property to multiply d by p+q.
Pap-Paq+dp^{2}-dq^{2}-d\left(p+q\right)=0
Use the distributive property to multiply dp+dq by p-q and combine like terms.
Pap-Paq+dp^{2}-dq^{2}-\left(dp+dq\right)=0
Use the distributive property to multiply d by p+q.
Pap-Paq+dp^{2}-dq^{2}-dp-dq=0
To find the opposite of dp+dq, find the opposite of each term.
Pap-Paq-dq^{2}-dp-dq=-dp^{2}
Subtract dp^{2} from both sides. Anything subtracted from zero gives its negation.
Pap-Paq-dp-dq=-dp^{2}+dq^{2}
Add dq^{2} to both sides.
Pap-Paq-dq=-dp^{2}+dq^{2}+dp
Add dp to both sides.
Pap-Paq=-dp^{2}+dq^{2}+dp+dq
Add dq to both sides.
Pap-Paq=-dp^{2}+dp+dq^{2}+dq
Reorder the terms.
\left(Pp-Pq\right)a=-dp^{2}+dp+dq^{2}+dq
Combine all terms containing a.
\left(Pp-Pq\right)a=dq+dq^{2}+dp-dp^{2}
The equation is in standard form.
\frac{\left(Pp-Pq\right)a}{Pp-Pq}=-\frac{d\left(p-q-1\right)\left(p+q\right)}{Pp-Pq}
Divide both sides by Pp-Pq.
a=-\frac{d\left(p-q-1\right)\left(p+q\right)}{Pp-Pq}
Dividing by Pp-Pq undoes the multiplication by Pp-Pq.
a=-\frac{d\left(p-q-1\right)\left(p+q\right)}{P\left(p-q\right)}
Divide -d\left(-1+p-q\right)\left(p+q\right) by Pp-Pq.
Pap-Paq+d\left(p+q\right)\left(p-q\right)-d\left(p+q\right)=0
Use the distributive property to multiply Pa by p-q.
Pap-Paq+\left(dp+dq\right)\left(p-q\right)-d\left(p+q\right)=0
Use the distributive property to multiply d by p+q.
Pap-Paq+dp^{2}-dq^{2}-d\left(p+q\right)=0
Use the distributive property to multiply dp+dq by p-q and combine like terms.
Pap-Paq+dp^{2}-dq^{2}-\left(dp+dq\right)=0
Use the distributive property to multiply d by p+q.
Pap-Paq+dp^{2}-dq^{2}-dp-dq=0
To find the opposite of dp+dq, find the opposite of each term.
Pap-Paq-dq^{2}-dp-dq=-dp^{2}
Subtract dp^{2} from both sides. Anything subtracted from zero gives its negation.
Pap-Paq-dp-dq=-dp^{2}+dq^{2}
Add dq^{2} to both sides.
Pap-Paq-dq=-dp^{2}+dq^{2}+dp
Add dp to both sides.
Pap-Paq=-dp^{2}+dq^{2}+dp+dq
Add dq to both sides.
Pap-Paq=-dp^{2}+dp+dq^{2}+dq
Reorder the terms.
\left(ap-aq\right)P=-dp^{2}+dp+dq^{2}+dq
Combine all terms containing P.
\left(ap-aq\right)P=dq+dq^{2}+dp-dp^{2}
The equation is in standard form.
\frac{\left(ap-aq\right)P}{ap-aq}=-\frac{d\left(p-q-1\right)\left(p+q\right)}{ap-aq}
Divide both sides by ap-aq.
P=-\frac{d\left(p-q-1\right)\left(p+q\right)}{ap-aq}
Dividing by ap-aq undoes the multiplication by ap-aq.
P=-\frac{d\left(p-q-1\right)\left(p+q\right)}{a\left(p-q\right)}
Divide -d\left(-1+p-q\right)\left(p+q\right) by ap-aq.
Pap-Paq+d\left(p+q\right)\left(p-q\right)-d\left(p+q\right)=0
Use the distributive property to multiply Pa by p-q.
Pap-Paq+\left(dp+dq\right)\left(p-q\right)-d\left(p+q\right)=0
Use the distributive property to multiply d by p+q.
Pap-Paq+dp^{2}-dq^{2}-d\left(p+q\right)=0
Use the distributive property to multiply dp+dq by p-q and combine like terms.
Pap-Paq+dp^{2}-dq^{2}-\left(dp+dq\right)=0
Use the distributive property to multiply d by p+q.
Pap-Paq+dp^{2}-dq^{2}-dp-dq=0
To find the opposite of dp+dq, find the opposite of each term.
Pap-Paq-dq^{2}-dp-dq=-dp^{2}
Subtract dp^{2} from both sides. Anything subtracted from zero gives its negation.
Pap-Paq-dp-dq=-dp^{2}+dq^{2}
Add dq^{2} to both sides.
Pap-Paq-dq=-dp^{2}+dq^{2}+dp
Add dp to both sides.
Pap-Paq=-dp^{2}+dq^{2}+dp+dq
Add dq to both sides.
Pap-Paq=-dp^{2}+dp+dq^{2}+dq
Reorder the terms.
\left(Pp-Pq\right)a=-dp^{2}+dp+dq^{2}+dq
Combine all terms containing a.
\left(Pp-Pq\right)a=dq+dq^{2}+dp-dp^{2}
The equation is in standard form.
\frac{\left(Pp-Pq\right)a}{Pp-Pq}=-\frac{d\left(p-q-1\right)\left(p+q\right)}{Pp-Pq}
Divide both sides by Pp-Pq.
a=-\frac{d\left(p-q-1\right)\left(p+q\right)}{Pp-Pq}
Dividing by Pp-Pq undoes the multiplication by Pp-Pq.
a=-\frac{d\left(p-q-1\right)\left(p+q\right)}{P\left(p-q\right)}
Divide -d\left(-1+p-q\right)\left(p+q\right) by Pp-Pq.