Solve for x_2 (complex solution)
x_{2}\in \mathrm{C}
P_{T}=0
Solve for x_2
x_{2}\in \mathrm{R}
P_{T}=0
Solve for P_T
P_{T}=0
Share
Copied to clipboard
P_{T}=permutation(0,1)-permutation(0,1)x_{2}+permutation(0,2)x_{2}
Use the distributive property to multiply permutation(0,1) by 1-x_{2}.
permutation(0,1)-permutation(0,1)x_{2}+permutation(0,2)x_{2}=P_{T}
Swap sides so that all variable terms are on the left hand side.
-permutation(0,1)x_{2}+permutation(0,2)x_{2}=P_{T}-permutation(0,1)
Subtract permutation(0,1) from both sides.
\left(-permutation(0,1)+permutation(0,2)\right)x_{2}=P_{T}-permutation(0,1)
Combine all terms containing x_{2}.
0=P_{T}
The equation is in standard form.
x_{2}\in
This is false for any x_{2}.
P_{T}=permutation(0,1)-permutation(0,1)x_{2}+permutation(0,2)x_{2}
Use the distributive property to multiply permutation(0,1) by 1-x_{2}.
permutation(0,1)-permutation(0,1)x_{2}+permutation(0,2)x_{2}=P_{T}
Swap sides so that all variable terms are on the left hand side.
-permutation(0,1)x_{2}+permutation(0,2)x_{2}=P_{T}-permutation(0,1)
Subtract permutation(0,1) from both sides.
\left(-permutation(0,1)+permutation(0,2)\right)x_{2}=P_{T}-permutation(0,1)
Combine all terms containing x_{2}.
0=P_{T}
The equation is in standard form.
x_{2}\in
This is false for any x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}