Solve for P_R, x
x = \frac{9344900}{9} = 1038322\frac{2}{9} \approx 1038322.222222222
P_{R}=90
Share
Copied to clipboard
1+\frac{x}{100}=\frac{93458}{9}
Consider the second equation. Divide both sides by 9.
900+9x=9345800
Multiply both sides of the equation by 900, the least common multiple of 100,9.
9x=9345800-900
Subtract 900 from both sides.
9x=9344900
Subtract 900 from 9345800 to get 9344900.
x=\frac{9344900}{9}
Divide both sides by 9.
P_{R}=90 x=\frac{9344900}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}