Skip to main content
Solve for P_A
Tick mark Image
Assign P_A
Tick mark Image

Similar Problems from Web Search

Share

P_{A}=\frac{800}{11}+\frac{80}{1.1^{2}}+\frac{80}{1.1^{3}}+\frac{80}{1.14}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Expand \frac{80}{1.1} by multiplying both numerator and the denominator by 10.
P_{A}=\frac{800}{11}+\frac{80}{1.21}+\frac{80}{1.1^{3}}+\frac{80}{1.14}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Calculate 1.1 to the power of 2 and get 1.21.
P_{A}=\frac{800}{11}+\frac{8000}{121}+\frac{80}{1.1^{3}}+\frac{80}{1.14}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Expand \frac{80}{1.21} by multiplying both numerator and the denominator by 100.
P_{A}=\frac{8800}{121}+\frac{8000}{121}+\frac{80}{1.1^{3}}+\frac{80}{1.14}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Least common multiple of 11 and 121 is 121. Convert \frac{800}{11} and \frac{8000}{121} to fractions with denominator 121.
P_{A}=\frac{8800+8000}{121}+\frac{80}{1.1^{3}}+\frac{80}{1.14}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Since \frac{8800}{121} and \frac{8000}{121} have the same denominator, add them by adding their numerators.
P_{A}=\frac{16800}{121}+\frac{80}{1.1^{3}}+\frac{80}{1.14}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Add 8800 and 8000 to get 16800.
P_{A}=\frac{16800}{121}+\frac{80}{1.331}+\frac{80}{1.14}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Calculate 1.1 to the power of 3 and get 1.331.
P_{A}=\frac{16800}{121}+\frac{80000}{1331}+\frac{80}{1.14}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Expand \frac{80}{1.331} by multiplying both numerator and the denominator by 1000.
P_{A}=\frac{184800}{1331}+\frac{80000}{1331}+\frac{80}{1.14}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Least common multiple of 121 and 1331 is 1331. Convert \frac{16800}{121} and \frac{80000}{1331} to fractions with denominator 1331.
P_{A}=\frac{184800+80000}{1331}+\frac{80}{1.14}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Since \frac{184800}{1331} and \frac{80000}{1331} have the same denominator, add them by adding their numerators.
P_{A}=\frac{264800}{1331}+\frac{80}{1.14}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Add 184800 and 80000 to get 264800.
P_{A}=\frac{264800}{1331}+\frac{8000}{114}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Expand \frac{80}{1.14} by multiplying both numerator and the denominator by 100.
P_{A}=\frac{264800}{1331}+\frac{4000}{57}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Reduce the fraction \frac{8000}{114} to lowest terms by extracting and canceling out 2.
P_{A}=\frac{15093600}{75867}+\frac{5324000}{75867}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Least common multiple of 1331 and 57 is 75867. Convert \frac{264800}{1331} and \frac{4000}{57} to fractions with denominator 75867.
P_{A}=\frac{15093600+5324000}{75867}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Since \frac{15093600}{75867} and \frac{5324000}{75867} have the same denominator, add them by adding their numerators.
P_{A}=\frac{20417600}{75867}+\frac{80}{1.15}+\frac{1000}{1.1^{5}}
Add 15093600 and 5324000 to get 20417600.
P_{A}=\frac{20417600}{75867}+\frac{8000}{115}+\frac{1000}{1.1^{5}}
Expand \frac{80}{1.15} by multiplying both numerator and the denominator by 100.
P_{A}=\frac{20417600}{75867}+\frac{1600}{23}+\frac{1000}{1.1^{5}}
Reduce the fraction \frac{8000}{115} to lowest terms by extracting and canceling out 5.
P_{A}=\frac{469604800}{1744941}+\frac{121387200}{1744941}+\frac{1000}{1.1^{5}}
Least common multiple of 75867 and 23 is 1744941. Convert \frac{20417600}{75867} and \frac{1600}{23} to fractions with denominator 1744941.
P_{A}=\frac{469604800+121387200}{1744941}+\frac{1000}{1.1^{5}}
Since \frac{469604800}{1744941} and \frac{121387200}{1744941} have the same denominator, add them by adding their numerators.
P_{A}=\frac{590992000}{1744941}+\frac{1000}{1.1^{5}}
Add 469604800 and 121387200 to get 590992000.
P_{A}=\frac{590992000}{1744941}+\frac{1000}{1.61051}
Calculate 1.1 to the power of 5 and get 1.61051.
P_{A}=\frac{590992000}{1744941}+\frac{100000000}{161051}
Expand \frac{1000}{1.61051} by multiplying both numerator and the denominator by 100000.
P_{A}=\frac{71510032000}{211137861}+\frac{131100000000}{211137861}
Least common multiple of 1744941 and 161051 is 211137861. Convert \frac{590992000}{1744941} and \frac{100000000}{161051} to fractions with denominator 211137861.
P_{A}=\frac{71510032000+131100000000}{211137861}
Since \frac{71510032000}{211137861} and \frac{131100000000}{211137861} have the same denominator, add them by adding their numerators.
P_{A}=\frac{202610032000}{211137861}
Add 71510032000 and 131100000000 to get 202610032000.